(1/619) Effects of heptanol on the neurogenic and myogenic contractions of the guinea-pig vas deferens.

1. The effects of the putative gap junction uncoupler, 1-heptanol, on the neurogenic and myogenic contractile responses of guinea-pig vas deferens were studied in vitro. 2. Superfusion of 2.0 mM heptanol for 20-30 min produced the following reversible changes in the biphasic neurogenic contractile response (8 trials): (i) suppression of both phases; (ii) delayed development of both the first as well as the second phase, accompanied by complete temporal separation of the two phases; (iii) prominent oscillations of force during the second (noradrenergic) phase only. 3. To eliminate prejunctional effects of heptanol, myogenic contractions were evoked by field stimulation of the vas in the presence of suramin (200 microM) and prazosin (1 microM). Heptanol (2.0 mM) abolished these contractions reversibly. 4. These results show that (i) heptanol inhibits both excitatory junction potential (EJP)-dependent and non EJP-dependent contractions of the vas; (ii) a postjunctional site of action of heptanol, probably intercellular uncoupling of smooth muscle cells, contributes to the inhibition of contraction.  (+info)

(2/619) Local regulation of vasopressin and oxytocin secretion by extracellular ATP in the isolated posterior lobe of the rat hypophysis.

It is now widely accepted that ATP functions as a signalling substance in the nervous system. The presence of P2 receptors mediating the action of extracellular ATP in brain regions involved in hormonal regulation raises the possibility that a similar role for ATP might also exist in the neuroendocrine system. In this study, the release from the rat isolated neurohypophysis preparation of endogenous ATP, oxytocin and vasopressin (AVP) were measured simultaneously using luciferin-luciferase and RIA techniques. After 70 min preperfusion, electrical field stimulation caused a rapid increase in the amount of ATP in the effluent and the release of AVP and oxytocin also increased stimulation-dependently. Inhibition of voltage-dependent Na+ channels by tetrodotoxin (1 microM) reduced the stimulation-evoked release of AVP and oxytocin; however, the evoked release of ATP remained unaffected. The effect of endogenous ATP on the hormone secretion was tested by suramin (300 microM), the P2 receptor antagonist. Suramin significantly increased the release of AVP, and the release of oxytocin was also enhanced. ATP, when applied to the superfusing medium, decreased the release of AVP, but not that of oxytocin, and its effect was prevented by suramin. ATP (60 nmol), added to the tissues, was readily decomposed to ADP, AMP and adenosine measured by HPLC combined with ultraviolet light detection, and the kinetic parameters of the enzymes responsible for inactivation of ATP (ectoATPase and ecto5'-nucleotidase) were also determined (Km=264+/-2.7 and 334+/-165 microM and vmax=6.7+/-1.1 and 2.54+/-0.24 nmol/min per preparation (n=3) for ectoATPase and ecto5'-nucleotidase respectively). Taken together, our data demonstrate the stimulation-dependent release, P2 receptor-mediated action and extracellular metabolism of endogenous ATP in the posterior lobe of the hypophysis and indicate its role, as a paracrine regulator, in the local control of hormone secretion.  (+info)

(3/619) Modulation of ATP-responses at recombinant rP2X4 receptors by extracellular pH and zinc.

The modulatory effects of extracellular H+ and Zn2+ were tested against ATP-responses at rat P2X4 (rP2X4) receptors expressed in Xenopus oocytes under voltage-clamp conditions. ATP (0.1-100 microM, at pH 7.5), evoked inward currents via rP2X4 receptors (EC50 value, 4.1+/-0.98 microM; nH, 1.2+/-0.1). ATP potency was reduced 2 fold, at pH 6.5, without altering maximal activity. ATP potency was reduced by a further 4 fold, at pH 5.5, and the maximal activity of ATP was also reduced. Alkaline conditions (pH 8.0) had no effect on ATP-responses. Zn2+ (100 nM - 10 microM) potentiated ATP-responses at the rP2X4 receptor by 2 fold, whereas higher concentrations (30 microM - 1 mM) inhibited ATP-responses. Zn2+ potentiation was due to an increase in ATP potency, whereas its inhibitory action was due to a reduction in ATP efficacy. Zn2+ modulation of ATP-responses was pH-dependent. At pH 6.5, the bell-shaped curve for Zn2+ was shifted to the right by 1 log unit. At pH 5.5, Zn2+ potentiation was abolished and its inhibitory effect reduced considerably. Suramin (50 microM) also potentiated ATP-responses at rP2X4 receptors. Neither H+ (pH 6.5 and 5.5), Zn2+ (10-100 microM) or a combination of both failed to reveal an inhibitory action of suramin at rP2X4 receptors. In conclusion, H+ and Zn2+ exerted opposite effects on the rP2X4 receptor by lowering and raising agonist potency, respectively. H+ (> or = 3 microM) and Zn2+ (> or = 30 microM) also reduces agonist efficacy by lowering the number of rP2X4 receptors available for activation. The striking differences between the modulatory actions of H+ and Zn2+ at rP2X4 and rP2X2 receptors are discussed.  (+info)

(4/619) Effects of vasopressin on the sympathetic contraction of rabbit ear artery during cooling.

In order to analyse the effects of arginine-vasopressin on the vascular contraction to sympathetic nerve stimulation during cooling, the isometric response of isolated, 2-mm segments of the rabbit central ear (cutaneous) artery to electrical field stimulation (1-8 Hz) was recorded at 37 and 30 degrees C. Electrical stimulation (37 degrees C) produced frequency-dependent arterial contraction, which was reduced at 30 degrees C and potentiated by vasopressin (10 pM, 100 pM and 1 nM). This potentiation was greater at 30 than at 37 degrees C and was abolished at both temperatures by the antagonist of vasopressin V1 receptors d(CH2)5 Tyr(Me)AVP (100 nM). Desmopressin (1 microM) did not affect the response to electrical stimulation. At 37 degrees C, the vasopressin-induced potentiation was abolished by the purinoceptor antagonist PPADS (30 microM), increased by phentolamine (1 microM) or prazosin (1 microM) and not modified by yohimbine (1 microM), whilst at 30 degrees C, the potentiation was reduced by phentolamine, yohimbine or PPADS, and was not modified by prazosin. The Ca2+-channel blockers, verapamil (10 microM) and NiCl2 (1 mM), abolished the potentiating effects of vasopressin at 37 degrees C whilst verapamil reduced and NiCl2 abolished this potentiation at 30 degrees C. The inhibitor of nitric oxide synthesis, L-NOARG (100 microM), or endothelium removal did not modify the potentiation by vasopressin at 37 and 30 degrees C. Vasopressin also increased the arterial contraction to the alpha2-adrenoceptor agonist BHT-920 (10 microM) and to ATP (2 mM) at 30 and 37 degrees C, but it did not modify the contraction to noradrenaline (1 microM) at either temperature. These results suggest that in cutaneous (ear) arteries, vasopressin potentiaties sympathetic vasoconstriction to a greater extent at 30 than at 37 degrees C by activating vasopressin V1 receptors and Ca2+ channels at both temperatures. At 37 degrees C, the potentiation appears related to activation of the purinoceptor component and, at 30 degrees C, to activation of both purinoceptor and alpha2-adrenoceptor components of the sympathetic response.  (+info)

(5/619) P2 purinoceptors contribute to ATP-induced inhibition of L-type Ca2+ current in rabbit atrial myocytes.

OBJECTIVE: Adenine compounds, including adenosine-5'-triphosphate (ATP) and adenosine (Ado), exert inhibitory effects on myocardium via P1 (subtype A1) purinoceptors. However, ATP per se is a potent activator of P2 purinoceptors. Our aim was to elucidate the respective roles of P1 and P2 purinoceptors in the actions of ATP on L-type calcium current (ICa) in rabbit atrial cells. METHODS AND RESULTS: A whole cell clamp technique was used to record ICa in single atrial cells from the rabbit heart. ATP (0.1 mumol/1-3 mmol/l) produced an inhibitory effect on ICa prestimulated by isoproterenol (ISO, 30 nmol/l), even in the presence of Ado (1 mmol/l). Both 1,3-dipropyl-8-cyclopentylxanthine (A1 blocker) and suramin (P2 blocker) partially blocked the ATP-induced inhibition of ICa, while their co-application nearly completely abolished the effect of ATP. ATP-gamma S (30 mumol/l) inhibited ISO-stimulated ICa significantly, and this inhibition was completely blocked by suramin. alpha, beta-Methylene-ADP, an inhibitor of hydrolysis of AMP to Ado, eliminated the suramin-resistant component of ICa inhibition by ATP. Pretreatment with pertussis toxin (PTX) abolished the ATP inhibition of ICa. Both intracellular dialysis with 8Br cAMP and the application of forskolin plus 3-isobutyl-1-methylxanthine also eliminated the effect of ATP. CONCLUSIONS: Both P1 and P2 purinoceptors are involved in the ATP inhibition of ISO-stimulated ICa in rabbit atrial cells. The P1 stimulation by ATP results from hydrolysis of ATP to Ado. Both the P2- and the P1-mediated effects of ATP and Ado, respectively. involve a PTX-sensitive and cAMP-dependent pathway.  (+info)

(6/619) P2Z/P2X7 receptor-dependent apoptosis of dendritic cells.

Macrophages and thymocytes express P2Z/P2X7 nucleotide receptors that bind extracellular ATP. These receptors play a role in immune development and control of microbial infections, but their presence on dendritic cells has not been reported. We investigated whether extracellular ATP could trigger P2Z/P2X7 receptor-dependent apoptosis of dendritic cells. Apoptosis could be selectively triggered by tetrabasic ATP, since other purine/pyrimidine nucleotides were ineffective, and it was mimicked by the P2Z receptor agonist, benzoylbenzoyl ATP, and blocked by magnesium and the irreversible antagonist, oxidized ATP. RT-PCR analysis confirmed the mRNA expression of the P2Z/P2X7 receptor and the absence of P2X1. Caspase inhibitors and cycloheximide had only a partial effect on the apoptosis, suggesting that a caspase-independent mechanism may also be operative. Brief treatment with ATP led to an increase in the intracellular calcium concentration and permeabilization of the plasma membrane to Lucifer yellow, which diffused throughout the dendritic cell cytosol. Other small extracellular molecules may thus attain a similar intracellular distribution, perhaps activating endogenous proteases that contribute to initiation of apoptosis.  (+info)

(7/619) Functional and biochemical evidence for heteromeric ATP-gated channels composed of P2X1 and P2X5 subunits.

The mammalian P2X receptor gene family encodes two-transmembrane domain nonselective cation channels gated by extracellular ATP. Anatomical localization data obtained by in situ hybridization and immunocytochemistry have shown that neuronal P2X subunits are expressed in specific but overlapping distribution patterns. Therefore, the native ionotropic ATP receptors diversity most likely arises from interactions between different P2X subunits that generate hetero-multimers phenotypically distinct from homomeric channels. Rat P2X1 and P2X5 mRNAs are localized within common subsets of peripheral and central sensory neurons as well as spinal motoneurons. The present study demonstrates a functional association between P2X1 and P2X5 subunits giving rise to hybrid ATP-gated channels endowed with the pharmacology of P2X1 and the kinetics of P2X5. When expressed in Xenopus oocytes, hetero-oligomeric P2X1+5 ATP receptors were characterized by slowly desensitizing currents highly sensitive to the agonist alpha,beta-methylene ATP (EC50 = 1.1 microM) and to the antagonist trinitrophenyl ATP (IC50 = 64 nM), observed with neither P2X1 nor P2X5 alone. Direct physical evidence for P2X1+5 co-assembly was provided by reciprocal subunit-specific co-purifications between epitope-tagged P2X1 and P2X5 subunits transfected in HEK-293A cells.  (+info)

(8/619) ATP is a mediator of the fast inhibitory junction potential in human jejunal circular smooth muscle.

The neurotransmitter(s) that generates the fast component of the inhibitory junction potential (IJP-F) in human jejunal circular smooth muscle is not known. The aim of this study was to determine the role of ATP and purinergic receptors in the generation of the IJP-F in human jejunal circular smooth muscle strips. The P2-receptor antagonist suramin (100 microM) reduced the IJP-F by 28%. Apamin (1 microM) reduced the IJP-F by 25%. Desensitization of muscle strips with the putative P2x-receptor agonist alpha, beta-methylene ATP (alpha,beta-MeATP, 100 microM) decreased the IJP-F by 44%, and desensitization with the putative P2y-receptor agonist adenosine 5'-O-2-thiodiphosphate (ADPbetaS) completely abolished the IJP-F. Desensitization with the putative P2y-receptor agonist 2-methylthioATP had no effect on the IJP-F. Exogenous ATP evoked a hyperpolarization with a time course that matched the IJP-F. The ATP-evoked hyperpolarization was reduced by apamin and suramin, reduced by desensitization with alpha,beta-MeATP (69% decrease), and abolished by desensitization with ADPbetaS. These data suggest that the IJP-F in human jejunal circular smooth muscle is mediated in part by ATP through an ADPbetaS-sensitive P2 receptor.  (+info)