Modulation of transmission during trains at a cerebellar synapse. (57/619)

Activity-dependent processes dynamically regulate synapses on the time scale of milliseconds to seconds. Here, we examine the factors governing synaptic strength during repetitive stimulation, both in control conditions and during presynaptic inhibition. Field recordings of presynaptic volleys, optical measurements of presynaptic calcium, and voltage-clamp recordings of postsynaptic currents were used to examine parallel fiber to Purkinje cell synapses in cerebellar brain slices at 34 degrees C. In control conditions, regular stimulus trains (1-50 Hz) evoked up to a 250% peak synaptic enhancement, whereas during irregular stimulation, a threefold variability in EPSC amplitude was observed. When initial EPSC amplitudes were reduced by 50%, either by lowering external calcium or by activating adenosine A(1) or GABA(B) receptors, the peak enhancement during regular trains was 500%, and synaptic variability during irregular trains was nearly sixfold. By contrast, changes in fiber excitability and calcium influx per pulse were small during trains. Presynaptic calcium measurements indicated that by pulse 10, stimulus-evoked calcium influx had increased by approximately 15%, which on the basis of the measured relationship between calcium influx and release corresponds to an EPSC enhancement of 50%. This enhancement was the same in all experimental conditions, even in the presence of N(6)-cyclopentyladenosine or baclofen, suggesting that repetitive stimulation does not relieve the G-protein inhibition of calcium channels by these modulators. Therefore, for our experimental conditions, changes in synaptic strength during trains are primarily attributable to residual calcium (Ca(res))-dependent short-term plasticities, and the actions of neuromodulators during repetitive stimulation result from their inhibition of initial calcium influx and the resulting effects on Ca(res) and calcium-driven processes.  (+info)

Effects of adenosine receptor antagonists on the responses to contrast media in the isolated rat kidney. (58/619)

Contrast media can induce both a decrease in renal blood flow and a reduction in glomerular filtration rate (GFR) when administered to both experimental animals and humans. In the present study we have examined the role of adenosine in mediating these effects using the isolated perfused rat kidney. Kidneys were perfused with a 6. 7%-(w/v)-albumin-based perfusate supplemented with glucose and amino acids (n=6 per group). They were exposed to diatrizoate [20 mg of iodine (mgI)/ml; osmolality 1650 mOsm/kg of water] or iotrolan (20 mgI/ml; osmolality 320 mOsm/kg of water) in the presence or absence of theophylline (10.8 microg/ml), or to diatrizoate in the presence or absence of a specific adenosine A(1) receptor antagonist (KW-3902; 2 microg/ml) or a specific A(2) receptor antagonist (KF17837; 6 microg/ml). Diatrizoate (n=6) produced a fall in GFR from 0.65+/-0.04 to 0.42+/-0.03 ml.min(-1).g(-1) (P<0.05); renal perfusate flow (RPF) also declined, from 36.5+/-3.8 to 22.0+/-3.2 ml. min(-1).g(-1) (P<0.05). Iotrolan (n=6) produced a fall in GFR from 0. 64+/-0.02 to 0.48+/-0.04 ml.min(-1).g(-1) (P<0.05) and in RPF from 33.3+/-3.8 to 24.0+/-3.0 ml.min(-1).g(-1) (P<0.05). Theophylline (10.8 microg/ml) prevented the fall in GFR caused by either diatrizoate (baseline, 0.63+/-0.05 ml.min(-1).g(-1); diatrizoate+theophylline, 0. 60+/-0.04 ml.min(-1).g(-1)) or iotrolan (baseline, 0.64+/-0.04 ml. min(-1).g(-1); iotrolan+theophylline, 0.67+/-0.05 ml.min(-1).g(-1)), but did not affect the decreases in RPF caused by either agent. KW-3902 (2 microg/ml) also prevented the fall in GFR produced by diatrizoate (baseline, 0.66+/-0.05 ml.min(-1).g(-1); diatrizoate+KW-3902, 0.61+/-0.05 ml.min(-1).g(-1)), while the fall in RPF remained unaffected. KF17837 (6 microg/ml) had no effect on the decreases in either GFR or RPF induced by diatrizoate (n=6 per group). The results suggest a role for adenosine acting at the A(1) receptor in mediating the decrease in GFR induced by contrast media. This effect is independent of a change in renal vascular resistance, and possibly secondary to mesangial cell contraction causing a decrease in the ultrafiltration coefficient.  (+info)

Presynaptic release of ATP from superior cervical ganglion of rats modulated by various receptors. (59/619)

AIM: To determine whether adenosine 5'-triphosphate (ATP) is released from the superior cervical ganglion (SCG) of rats and whether the release is regulated by presynaptic mechanism. METHODS: Using the luciferin-luciferase technique. RESULTS: Electric stimulation evoked the release of ATP from the rat SCG. Adenosine (100 mumol.L-1), P1(A1) purinoceptor agonist N6-cyclopentyladenosine (0.1 mumol.L-1), the muscarinic agonist oxotremorine (1 mumol.L-1), and 5-hydroxytryptamine (100 mumol.L-1) decreased the evoked release of ATP from the rat SCG. On the contrary, P1(A1) purinoceptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (10 nmol.L-1), P2 purinoceptor antagonist pyridoxal-5-phosphate-6-azophenyl-2',4-disulphonic acid (10 mumol.L-1), muscarinic antagonist atropine (1 mumol.L-1), alpha 2 adrenoceptor antagonist yohimbine (3 mumol.L-1), D2 dopamine receptor antagonist sulpiride (20 mumol.L-1), and histamine (100 mumol.L-1) increased the evoked release of ATP from the rat SCG. CONCLUSION: ATP is released from the rat SCG and the release of ATP can be presynaptically modulated by P1(A1), P2, muscarinic, alpha adrenergic, D2, 5-HT, and H1 receptor agonists and antagonists.  (+info)

11C-labeled KF18446: a potential central nervous system adenosine A2a receptor ligand. (60/619)

To develop PET ligands for mapping central nervous system (CNS) adenosine A2a receptors that are localized in the striatum and are coupled with dopamine receptors, 3 11C-labeled xanthine-type adenosine A2a antagonists, [11C]KF18446 ([7-methyl-11C]-(E)-8-(3,4,5-trimethoxystyryl)-1,3,7-trimethylxanthin e), [11C]KF19631 ([7-methyl-11C]-(E)-1,3-diallyl-7-methyl-8-(3,4,5-trimethoxystyryl)xanth ine), and [11C]CSC ([7-methyl-11C]-8-chlorostyrylcaffeine), were compared with [11C]KF17837 ([7-methyl-11C]-(E)-8-(3,4-dimethoxystyryl)-1,3-dipropyl-7-methylx anthine). METHODS: The regional brain uptake of the tracers, the effect of the coinjected adenosine antagonists on the uptake, and the metabolism were studied in mice. In rats, the regional brain uptake of the tracers was visualized by ex vivo autoradiography (ARG). The A2a receptor binding of antagonist 1 was also measured by in vitro ARG. Imaging of the monkey brain was performed with PET with antagonist 1. RESULTS: In mice, the highest striatal uptake was found for antagonist 1 followed by antagonists 2 and 4. The uptake was inhibited by each of 3 KF compounds and by CSC, but not by an A1 antagonist KF15372. Another selective nonxanthine-type A2a antagonist SCH 58261 significantly decreased the striatal uptake of only antagonist 1, the labeled metabolites of which were less than 20% in the plasma 30 min postinjection, but were negligible in the brain tissue. In ex vivo ARG, antagonist 1 showed the highest striatal uptake and the highest uptake ratio of the striatum to the other brain regions. A high and selective binding of antagonist 1 to the striatum was also confirmed by in vitro ARG. PET with antagonist 1 visualized adenosine A2a receptors in the monkey striatum. CONCLUSION: These results indicate that antagonist 1 ([11C]KF18446) is the most suitable PET ligand for mapping adenosine A2a receptors in the CNS.  (+info)

Sustained reduction in myocardial reperfusion injury with an adenosine receptor antagonist: possible role of the neutrophil chemoattractant response. (61/619)

Recent studies have demonstrated that three membrane-permeant A(1) receptor antagonists reduced infarct size in a model of ischemia followed by brief reperfusion. However, it was not determined whether cardioprotection was mediated by nonspecific intracellular effects of these highly lipophilic drugs and whether the antagonists only delayed myocardial necrosis without affecting the ultimate infarct size. In the present study, closed-chest dogs were subjected to 90 min of left anterior descending coronary artery occlusion and 72 h of reperfusion and received either a nonmembrane-permeant adenosine receptor blocker that is devoid of direct intracellular effects and is 6-fold selective for the A(1) receptor [1, 3-dipropyl-8-p-sulfophenylxanthine (DPSPX); n = 11] or vehicle (n = 12). DPSPX was administered as three 200-mg boluses 60 min before and 30 and 120 min after reperfusion. The area of necrosis was determined histologically and expressed as a percentage of the area at risk. Baseline predictors of infarct size were similar in the two groups. The ratio of the area of necrosis to the area at risk was less in the DPSPX group (17.8 +/- 4.3% versus 35.0 +/- 1.9%; P =. 012), and DPSPX improved regional ventricular function. Under both basal and stimulated (formyl-Met-Leu-Phe) conditions, suspensions of human neutrophils generated extracellular adenosine levels (approximately 50 nM) sufficient to activate A(1) receptors. Moreover, both DPSPX and 1,3-dipropyl-8-cyclopentylxanthine, a selective A(1) receptor antagonist, significantly reduced the chemoattractant response of neutrophils to formyl-Met-Leu-Phe. We conclude that blockade of A(1) adenosine receptors attenuates myocardial ischemic/reperfusion injury, possibly in part by decreasing the chemoattractant response of neutrophils.  (+info)

Ligand binding inhibitors of A1 adenosine receptor from Rana rugosa are phospholipase A2s. (62/619)

Inhibitors of the A1 adenosine receptor were isolated from the skin extract of Korean frog, Rana rugosa. The frog-skin extract was prepared by an electrical shock and fractionated with C4 followed by C18 reverse-phase HPLC. Two A1 receptor inhibitors were isolated using a filter binding assay and the molecular masses of the proteins were estimated by matrix-assisted laser desorption ionization time-of-flight mass spectrometry to be 15 347 and 15 404 Da, respectively. The inhibitory activity was also measured against other membrane receptors, such as the A2 adenosine receptor, muscarinic acetylcholine receptor and capsaicin receptor. Ligand binding to the A2 and muscarinic receptors was also severely inhibited by these proteins. However, they did not inhibit the functional activation of the capsaicin receptor by its ligand, capsaicin, suggesting that inhibition of ligand-receptor binding occurs specifically. Their N-terminal sequences were determined by Edman degradation. Surprisingly, they showed sequence similarity to the secretory protein, phospholipase A2 from various organisms. The phospholipase A2 activity of both proteins was tested using Dole's assay technique. Both proteins showed phospholipase A2 activity, and therefore, they were designated as PLA2-R1 and PLA2-R2, respectively. In addition, their ligand-binding inhibitory activity depended on their phospholipase A2 activity. This is the first finding that the frog secretes a phospholipase A2 similar to that of snake venoms, which posess inhibitory activity against the adenosine A1, adenosine A2 and muscarinic receptors.  (+info)

Subtype-specific kinetics of inhibitory adenosine receptor internalization are determined by sensitivity to phosphorylation by G protein-coupled receptor kinases. (63/619)

Despite coupling to the same class of inhibitory G proteins and binding the same physiological ligand, the human A(1) and rat A(3) adenosine receptors (ARs) desensitize at different rates in response to sustained agonist exposure. This is due to the ability of the A(3)AR, but not the A(1)AR, to serve as a substrate for rapid phosphorylation and desensitization by members of the G protein-coupled receptor kinase (GRK) family. The aim of this study was to investigate whether these differences were also manifested in their abilities to undergo agonist-dependent receptor internalization. For the first time, we report that A(3)ARs internalize profoundly in response to short-term exposure to agonist but not activators of second messenger-regulated kinases. The A(3)AR-selective antagonist MRS1523 blocked both A(3)AR phosphorylation and internalization. Moreover, in contrast to the A(1)AR, which internalized quite slowly (t(1/2) = 90 min), A(3)ARs internalized rapidly (t(1/2) = 10 min) over a time frame that followed the onset of receptor phosphorylation. A nonphosphorylated A(3)AR mutant failed to internalize over a 60-min time course, suggesting that receptor phosphorylation was essential for rapid A(3)AR internalization to occur. In addition, fusion onto the A(1)AR of the A(3)AR C-terminal domain containing the sites for phosphorylation by GRKs conferred rapid agonist-induced internalization kinetics (t(1/2) = 10 min) on the resulting chimeric AR. In conclusion, these data suggest that GRK-stimulated phosphorylation of threonine residues within the C-terminal domain of the A(3)AR is obligatory to observe rapid agonist-mediated internalization of the receptor.  (+info)

Adenosine induces cyclic-AMP formation and inhibits endothelin-1 production/secretion in guinea-pig tracheal epithelial cells through A(2B) adenosine receptors. (64/619)

1. The adenosine receptor subtype mediating adenosine 3' : 5'-cyclic monophosphate (cyclic AMP) formation and the effect of its activation on endothelin-1 (ET-1) secretion were studied in primary cultures of tracheal epithelial cells. 2. Adenosine analogues showed the following rank order of potency (pD(2) value) and intrinsic activity on the generation of cyclic AMP by tracheal epithelial cells: 5'-N-ethylcarboxyamidoadenosine (NECA, A(1)/A(2A)/A(2B), pD(2): 5.44+/-0.16)>adenosine (ADO, non selective, pD(2): 4.99+/-0. 09; 71+/-9% of NECA response) >/=2-Cl-adenosine (2CADO, non selective, pD(2): 4.72+/-0.14; 65+/-9% of NECA response)>>>CGS21680 (A(2A); inactive at up to 100 microM). 3. Cyclic AMP formation stimulated by NECA in guinea-pig tracheal epithelial cells was inhibited by adenosine receptor antagonist with the following order of apparent affinity (pA(2) value): Xanthine amine congeners (XAC, A(2A)/A(2B), 7.89+/-0.22)>CGS15943 (A(2A)/A(2B), 7.24+/-0. 26)>ZM241385 (A(2A), 6.69+/-0.14)>DPCPX (A(1), 6.51+/-0. 14)>3n-propylxanthine (weak A(2B), 4.30+/-0.10). This rank order of potency is typical for A(2B)-adenosine receptor. 4. Adenosine decreased basal and LPS-stimulated irET production in a concentration-dependent manner. Moreover, NECA but not CGS21680 inhibited LPS-induced irET production. 5. The inhibitory effect of NECA on LPS-induced irET production was reversed by XAC (pA(2)=8.84+/-0. 12) and DPCPX (pA(2)=8.10+/-0.22). 6. These results suggested that adenosine increased cyclic AMP formation and inhibited irET production/secretion by guinea-pig tracheal epithelial cells through the activation of a functional adenosine receptor that is most likely the A(2B) subtype. This adenosine receptor may be involved in the regulation of the level of ET-1 production/secretion by guinea-pig tracheal epithelial cells in physiological as well as in pathophysiological conditions.  (+info)