The vortex wake of the free-swimming larva and pupa of Culex pipiens (Diptera). (73/933)

The kinematics and hydrodynamics of free-swimming pupal and larval (final-instar) culicids were investigated using videography and a simple wake-visualisation technique (dyes). In both cases, swimming is based on a technique of high-amplitude, side-to-side (larva) or up-and-down (pupa) bending of the body. The pupa possesses a pair of plate-like abdominal paddles; the larval abdominal paddle consists of a fan of closely spaced bristles which, at the Reynolds numbers involved, behaves like a continuous surface. Wake visualisation showed that each half-stroke of the swimming cycle produces a discrete ring vortex that is convected away from the body. Consecutive vortices are produced first to one side then to the other of the mean swimming path, the convection axis being inclined at approximately 25 degrees away from dead aft. Pupal and larval culicids therefore resemble fish in using the momentum injected into the water to generate thrust. Preliminary calculations for the pupa suggest that each vortex contains sufficient momentum to account for that added to the body with each half-stroke. The possibility is discussed that the side-to-side flexural technique may allow an interaction between body and tail flows in the production of vorticity.  (+info)

Temperature shock during development fails to increase the fluctuating asymmetry of a sexual trait in stalk-eyed flies. (74/933)

The fluctuating asymmetry (FA) of bilateral traits is claimed to be a general indicator of environmental stress. Exaggerated sexual ornaments are thought to show elevated levels of FA and a greater response to stress than other traits. Previous work with stalk-eyed flies (Cyrtodiopsis dalmanni) has shown that the FA of the sexual trait (male eye stalks), wing length and wing width were unaffected by a continually applied food stress. Here we tested whether a transient stress (24-h heat shock at 31 degrees C during development) affected the FA of these traits. A second experiment tested the combined stresses of transient heat shock at 31 degrees C with continuous exposure to desiccation. In each experiment, temperature shock reduced the trait size, confirming that the treatments were stressful. However, stress had no effect on the FA of individual traits or the FA summed across all traits. Exposure to the combined stresses significantly elevated mortality and reduced trait size compared to the single-stress regime. However, FA did not differ significantly between flies from the two experiments. We found no evidence that FA in sexual and non-sexual traits reflects transient stress during the development of C. dalmanni.  (+info)

Asymmetric colocalization of Flamingo, a seven-pass transmembrane cadherin, and Dishevelled in planar cell polarization. (75/933)

The Drosophila wing provides an appropriate model system for studying genetic programming of planar cell polarity (PCP) [1-4]. Each wing cell respects the proximodistal (PD) axis; i.e., it localizes an assembly of actin bundles to its distalmost vertex and produces a single prehair. This PD polarization requires the redistribution of Flamingo (Fmi), a seven-pass transmembrane cadherin, to proximal/distal cell boundaries; otherwise, the cell mislocalizes the prehair [5]. Achievement of the biased Fmi pattern depends on two upstream components in the PCP signaling pathway: Frizzled (Fz), a receptor for a hypothetical polarity signal, and an intracellular protein, Dishevelled (Dsh) [6-8]. Here, we visualized endogenous Dsh in the developing wing. A portion of Dsh colocalized with Fmi, and the distributions of both proteins were interdependent. Furthermore, Fz controlled the association of Dsh with cell boundaries, which association was correlated with the presence of hyperphosphorylated forms of Dsh. Our results, together with a recent study on Fz distribution [9], support the possibility that Fz, Dsh, and Fmi constitute a signaling complex and that its restricted localization directs cytoskeletal reorganization only at the distal cell edge.  (+info)

Brood insurance via protogyny: a source of female-biased sex allocation. (76/933)

Sex allocation patterns and colony productivity are examined in Exoneura nigrescens, a social allodapine bee. As for previous studies on Australian allodapine bees, numerical sex ratios were strongly female biased in the smallest broods, but neared equality in larger broods. Local fitness enhancement has been suggested previously to explain female-biased allocation in allodapine bees. Here, we propose an alternative model, the 'insurance model', which predicts protogyny and, as a consequence, female-biased sex allocation in small broods with decreasing bias in larger broods. Because allodapine broods are reared progressively in an open burrow, broods require that adult females be present throughout their development in order to survive to maturity. If mothers invest in daughters (alloparents) first, these daughters can rear younger, dependent brood in cases in which orphaning occurs. If such daughters behave as surrogate mothers, then investment in them by mothers should not be regarded as investment in female sex allocation per se, giving rise to apparently female-biased broods. The model predicts a pattern of sex ratios as a function of total brood size that very closely match empirical data from E. nigrescens.  (+info)

Targeted disruption of a pupal hemocyte protein of Sarcophaga by RNA interference. (77/933)

Previously, we purified a transmembrane protein with a molecular mass of 120 kDa (p120) that is exclusively expressed in pupal hemocytes of Sarcophaga. In this study, we demonstrated that double-stranded RNA (dsRNA) injected into the larval body cavity effectively inhibited the expression of p120 in pupal hemocytes. Thus, RNA interference (RNAi) was found to be a useful technique for creating pupal hemocytes with a loss-of-function of a specific protein. The p120-less pupal hemocytes generated by RNAi were found to have lost the ability to take up acetylated low density lipoprotein, indicating that p120 is a scavenger receptor specifically expressed on the surface of pupal hemocytes.  (+info)

The generation and diversification of butterfly eyespot color patterns. (78/933)

BACKGROUND: A fundamental challenge of evolutionary and developmental biology is understanding how new characters arise and change. The recently derived eyespots on butterfly wings vary extensively in number and pattern between species and play important roles in predator avoidance. Eyespots form through the activity of inductive organizers (foci) at the center of developing eyespot fields. Foci are the proposed source of a morphogen, the levels of which determine the color of surrounding wing scale cells. However, it is unknown how reception of the focal signal translates into rings of different-colored scales, nor how different color schemes arise in different species. RESULTS: We have identified several transcription factors, including butterfly homologs of the Drosophila Engrailed/Invected and Spalt proteins, that are deployed in concentric territories corresponding to the future rings of pigmented scales that compose the adult eyespot. We have isolated a new Bicyclus anynana wing pattern mutant, Goldeneye, in which the scales of one inner color ring become the color of a different ring. These changes correlate with shifts in transcription factor expression, suggesting that Goldeneye affects an early regulatory step in eyespot color patterning. In different butterfly species, the same transcription factors are expressed in eyespot fields, but in different relative spatial domains that correlate with divergent eyespot color schemes. CONCLUSIONS: Our results suggest that signaling from the focus induces nested rings of regulatory gene expression that subsequently control the final color pattern. Furthermore, the remarkably plastic regulatory interactions downstream of focal signaling have facilitated the evolution of eyespot diversity.  (+info)

Ostia, the inflow tracts of the Drosophila heart, develop from a genetically distinct subset of cardial cells. (79/933)

The homeobox gene tinman and the nuclear receptor gene seven-up are expressed in mutually exclusive dorsal vessel cells in Drosophila, however, the physiological reason for this distinction is not known. We demonstrate that tin and svp-lacZ expression persists through the larval stage to the adult stage in the same pattern of cells expressing these genes in the embryo. In the larva, six pairs of Svp-expressing cells form muscular ostia, which permit hemolymph to enter the heart for circulation, however, more anterior Svp-expressing cells form the wall of the dorsal vessel. During pupation, the adult heart forms from a chimera of larval and imaginal muscle fibers. The portion of the dorsal vessel containing the larval ostia is histolyzed and the anterior Svp-expressing cells metamorphose into imaginal ostia. This is the first demonstration that the significant molecular diversity of cardial cells identified in the embryonic heart correlates with the formation of physiologically and functionally distinct muscle cells in the animal. Furthermore, our experiments define the cellular changes that occur as the larval heart is remodeled into an imaginal structure in an important model organism.  (+info)

Drosophila LAR regulates R1-R6 and R7 target specificity in the visual system. (80/933)

Different classes of photoreceptor neurons (R cells) in the Drosophila compound eye connect to specific targets in the optic lobe. Using a behavioral screen, we identified LAR, a receptor tyrosine phosphatase, as being required for R cell target specificity. In LAR mutant mosaic eyes, R1-R6 cells target to the lamina correctly, but fail to choose the correct pattern of target neurons. Although mutant R7 axons initially project to the correct layer of the medulla, they retract into inappropriate layers. Using single cell mosaics, we demonstrate that LAR controls targeting of R1-R6 and R7 in a cell-autonomous fashion. The phenotypes of LAR mutant R cells are strikingly similar to those seen in N-cadherin mutants.  (+info)