Surfactant protein A binds to the fusion glycoprotein of respiratory syncytial virus and neutralizes virion infectivity. (9/423)

Collectins are a family of calcium-dependent collagenous lectins that appear to be important in innate host defense. We investigated the ability of three human collectins, namely, lung surfactant proteins A (SP-A) and D (SP-D) and the serum mannose-binding protein (MBP), to bind to the surface glycoproteins of respiratory syncytial virus (RSV). SP-A was shown to bind to the F (fusion) glycoprotein but not to the viral G (attachment) glycoprotein, and binding was completely abrogated in the presence of EDTA. Neither SP-D nor MBP bound to either glycoprotein. SP-A also neutralized RSV in a calcium dependent fashion. These results support a role for SP-A in the defense of infants against infection with RSV and indicate a possible mechanism for its protective activity.  (+info)

Lung surfactant proteins (SP-A and SP-D) in non-adaptive host responses to infection. (10/423)

The lung surfactant proteins A and D (SP-A and SP-D) are collectins composed of C-type lectin domains attached to collagen regions. SP-A and SP-D are mainly found in the surfactant covering the pulmonary epithelial cells, but are also produced by cells lining the gastrointestinal tract. The main role of SP-A and SP-D is to interact directly with carbohydrate on the surface of microbial pathogens, thereby initiating a variety of effector mechanisms. This review focuses on the non-adaptive host responses of SP-A and SP-D to infection. Interaction of SP-A and SP-D with phagocytes is discussed and the structure and function of the putative receptors for SP-A and SP-D is presented. SP-A and SP-D seem to be regulated in a way similar to acute-phase proteins in the course of inflammation and evidence for the involvement of SP-A and SP-D as immunomodulators as well as their role in clearing allergens and modulating effector mechanisms in allergic reactions is discussed.  (+info)

Porcine lung surfactant protein D: complementary DNA cloning, chromosomal localization, and tissue distribution. (11/423)

Porcine organs and lung surfactant have medically important applications in both xenotransplantation and therapy. We have started to characterize porcine lung surfactant by cloning the cDNA of porcine surfactant protein D (SP-D). SP-D and SP-A are important mediators in innate immune defense for the lung and possibly other mucosal surfaces. Porcine SP-D will also be an important reagent for use in existing porcine animal models for human lung infections. The complete cDNA sequence of porcine SP-D, including the 5' and 3' untranslated regions, was determined from two overlapping bacteriophage clones and by PCR cloning. Three unique features were revealed from the porcine sequence in comparison to SP-D from other previously characterized species, making porcine SP-D an intriguing species addition to the SP-D/collectin family. The collagen region contains an extra cysteine residue, which may have important structural consequences. The other two differences, a potential glycosylation site and an insertion of three amino acids, lie in the loop regions of the carbohydrate recognition domain, close to the carbohydrate binding region and thus may have functional implications. These variations were ruled out as polymorphisms or mutations by confirming the sequence at the genomic level in four different pig breeds. Porcine SP-D was shown to localize primarily to the lung and with less abundance to the duodenum, jejunum, and ileum. The genes for SP-D and SP-A were also shown to colocalize to a region of porcine chromosome 14 that is syntenic with the human and murine collectin loci.  (+info)

Enhanced anti-influenza activity of a surfactant protein D and serum conglutinin fusion protein. (12/423)

We previously demonstrated that bovine serum conglutinin has markedly greater ability to inhibit influenza A virus (IAV) infectivity than other collectins. We now show that recombinant conglutinin and a chimeric protein containing the NH(2) terminus and collagen domain of rat pulmonary surfactant protein D (rSP-D) fused to the neck region and carbohydrate recognition domain (CRD) of conglutinin (termed SP-D/Cong(neck+CRD)) have markedly greater ability to inhibit infectivity of IAV than wild-type recombinant rSP-D, confirming that the potent IAV-neutralizing activity of conglutinin resides in its neck region and CRD. Furthermore, by virtue of incorporation of the NH(2) terminus and collagen domain of SP-D, SP-D/Cong(neck+CRD) caused substantially greater aggregation of IAV particles and enhancement of neutrophil binding of, and H(2)O(2) responses to, IAV than recombinant conglutinin or recombinant rSP-D. Hence, SP-D/Cong(neck+CRD) combined favorable antiviral and opsonic properties of conglutinin and SP-D. This study demonstrates an association of specific structural domains of SP-D and conglutinin with specific functional properties and illustrates that antimicrobial activities of wild-type collectins can be enhanced through recombinant strategies.  (+info)

Pulmonary-specific expression of SP-D corrects pulmonary lipid accumulation in SP-D gene-targeted mice. (13/423)

Targeted disruption of the surfactant protein (SP) D (SP-D) gene caused a marked pulmonary lipoidosis characterized by increased alveolar lung phospholipids, demonstrating a previously unexpected role for SP-D in surfactant homeostasis. In the present study, we tested whether the local production of SP-D in the lung influenced surfactant content in SP-D-deficient [SP-D(-/-)] and SP-D wild-type [SP-D(+/+)] mice. Rat SP-D (rSP-D) was expressed under control of the human SP-C promoter, producing rSP-D, SP-D(+/+) transgenic mice. SP-D content in bronchoalveolar lavage fluid was increased 30- to 50-fold in the rSP-D, SP-D(+/+) mice compared with the SP-D(+/+) parental strain. Lung morphology, phospholipid content, and surfactant protein mRNAs were unaltered by the increased concentration of SP-D. Likewise, the production of endogenous mouse SP-D mRNA was not perturbed by the SP-D transgene. rSP-D, SP-D(+/+) mice were bred to SP-D(-/-) mice to assess whether lung-selective expression of SP-D might correct lipid homeostasis abnormalities in the SP-D(-/-) mice. Selective expression of SP-D in the respiratory epithelium had no adverse effects on lung function, correcting surfactant phospholipid content and decreasing phosphatidylcholine incorporation significantly. SP-D regulates surfactant lipid homeostasis, functioning locally to inhibit surfactant phospholipid incorporation in the lung parenchyma and maintaining alveolar phospholipid content in the alveolus. Marked increases in biologically active tissue and alveolar SP-D do not alter lung morphology, macrophage abundance or structure, or surfactant accumulation.  (+info)

Novel, non-radioactive, simple and multiplex PCR-cRFLP methods for genotyping human SP-A and SP-D marker alleles. (14/423)

We have previously identified an allele of the human SP-A2 gene that occurs with greater frequency in an RDS population [12]. Because of the importance of SP-A in normal lung function and its newly emerging role in innate host defense and regulation of inflammatory processes, we wish to better characterize genotypes of both SP-A1 and SP-A2 genes. It has been determined that SP-D shares similar roles in immune response. Therefore, in this report we 1) describe a novel, non radioactive PCR based-cRFLP method for genotyping both SP-A and SP-D; 2) describe two previously unpublished biallelic polymorphisms within the SP-D gene; 3) present the partial sequence of one new SP-A1 allele (6A14) and describe other new SP-A1 and SP-A2 alleles; and 4) describe additional methodologies for SP-A genotype assessment. The ability to more accurately and efficiently genotype samples from individuals with various pulmonary diseases will facilitate population and family based association studies. Genetic polymorphisms may be identified that partially explain individual disease susceptibility and/or treatment effectiveness.  (+info)

P. carinii induces selective alterations in component expression and biophysical activity of lung surfactant. (15/423)

Studies of Pneumocystis carinii pneumonia (PCP) suggest an important role for the surfactant system in the pathogenesis of the hypoxemic respiratory insufficiency associated with this infection. We hypothesized that PCP induces selective alterations in alveolar surfactant component expression and resultant biophysical properties. PCP was induced by intratracheal inoculation of 2 x 10(5) P. carinii organisms into C.B-17 scid/scid mice. Six weeks after inoculation, large (LA)- and small (SA)-aggregate surfactant fractions were prepared from bronchoalveolar lavage fluids and analyzed for expression of surfactant components and for biophysical activity. Total phospholipid content was significantly reduced in LA surfactant fractions from mice infected with PCP (53 +/- 15% of uninfected mice; P < 0.05). Quantitation of hydrophobic surfactant protein (SP) content demonstrated significant reductions of alveolar SP-B and SP-C protein levels in mice with PCP compared with those in uninfected mice (46 +/- 7 and 19 +/- 6%, respectively; P < 0.05 for both). The reductions in phospholipid, SP-B, and SP-C in LA fractions measured during PCP were associated with an increase in the minimum surface tension of LAs as measured by pulsating bubble surfactometer (13.1 +/- 1.1 vs. 5.4 +/- 1.8 mN/m; P < 0.05). In contrast to decreases in the hydrophobic SPs, SP-D content in the SA fraction was markedly increased (343 +/- 30% of control value; P < 0. 05) and SP-A levels in LA surfactant were maintained (93 +/- 26% of control value) during P. carinii infection. In all cases, the changes in SP content were reflected by commensurate changes in the levels of mRNA. We conclude that PCP induces selective alterations in surfactant component expression, including profound decreases in hydrophobic protein contents and resultant increases in surface tension. These changes, demonstrated in an immunologically relevant animal model, suggest that alterations in surfactant could contribute to the hypoxemic respiratory insufficiency observed in PCP.  (+info)

Binding and uptake of surfactant protein D by freshly isolated rat alveolar type II cells. (16/423)

Alveolar type II cells secrete, internalize, and recycle pulmonary surfactant, a lipid and protein complex that increases alveolar compliance and participates in pulmonary host defense. Surfactant protein (SP) D, a collagenous C-type lectin, has recently been described as a modulator of surfactant homeostasis. Mice lacking SP-D accumulate surfactant in their alveoli and type II cell lamellar bodies, organelles adapted for recycling and secretion of surfactant. The goal of current study was to characterize the interaction of SP-D with rat type II cells. Type II cells bound SP-D in a concentration-, time-, temperature-, and calcium-dependent manner. However, SP-D binding did not alter type II cell surfactant lipid uptake. Type II cells internalized SP-D into lamellar bodies and degraded a fraction of the SP-D pool. Our results also indicated that SP-D binding sites on type II cells may differ from those on alveolar macrophages. We conclude that, in vitro, type II cells bind and recycle SP-D to lamellar bodies, but SP-D may not directly modulate surfactant uptake by type II cells.  (+info)