Surfactant proteins A and D in Eustachian tube epithelium. (49/423)

Surfactant protein (SP) A and SP-D are collectins that have roles in host defense. The Eustachian tube (ET) maintains the patency between the upper airways and the middle ear. Dysfunction of local mucosal immunity in ET may predispose infants to recurrent otitis media. We recently described preliminary evidence of the expression of SP-A and SP-D in the ET. Our present aim was to establish the sites of SP-A and SP-D expression within the epithelium of the ET in vivo. With in situ hybridization, electron microscopy, and immunoelectron microscopy, the cells responsible for SP-A and SP-D expression and storage were identified. SP-A expression was localized within the ET epithelium, and the protein was found in the electron-dense granules of microvillar epithelial cells. Being concentrated in the epithelial lining, only a few cells revealed intracellular SP-D, and it was not associated with granules. The SP-A and SP-D immunoreactivities in ET lavage fluid, as shown by Western blot analyses, were similar to those in bronchoalveolar lavage fluid. We propose that there are specialized cells in the ET epithelium expressing and secreting SP-A and SP-D. SP-A and SP-D may be important for antibody-independent protection of the middle ear against infections.  (+info)

SP-D and GM-CSF regulate surfactant homeostasis via distinct mechanisms. (50/423)

Both surfactant protein (SP) D and granulocyte-macrophage colony-stimulating factor (GM-CSF) influence pulmonary surfactant homeostasis, with the deficiency of either protein causing marked accumulation of surfactant phospholipids in lung tissues and in the alveoli. To assess whether the effects of each gene were mediated by distinct or shared mechanisms, surfactant homeostasis and lung morphology were assessed in 1) double-transgenic mice in which both SP-D and GM-CSF genes were ablated [SP-D(-/-),GM(-/-)] and 2) transgenic mice deficient in both SP-D and GM-CSF in which the expression of GM-CSF was increased in the lung. Saturated phosphatidylcholine (Sat PC) pool sizes were markedly increased in SP-D(-/-),GM(-/-) mice, with the effects of each gene deletion on surfactant Sat PC pool sizes being approximately additive. Expression of GM-CSF in lungs of SP-D(-/-),GM(-/-) mice corrected GM-CSF-dependent abnormalities in surfactant catabolism but did not correct lung pathology characteristic of SP-D deletion. In contrast to findings in GM(-/-) mice, degradation of [(3)H]dipalmitoylphosphatidylcholine by alveolar macrophages from the SP-D(-/-) mice was normal. The emphysema and foamy macrophage infiltrates characteristic of SP-D(-/-) mice were similar in the presence or absence of GM-CSF. Taken together, these findings demonstrate the distinct roles of SP-D and GM-CSF in the regulation of surfactant homeostasis and lung structure.  (+info)

Interaction of bacterial lipopolysaccharide with mouse surfactant protein C inserted into lipid vesicles. (51/423)

Infection of the respiratory tract is a frequent cause of lung pathologies, morbidity, and death. When bacterial endotoxin [lipopolysaccharide (LPS)] reaches the alveolar spaces, it encounters the lipid-rich surfactant that covers the epithelium. Although binding of hydrophilic surfactant protein (SP) A and SP-D with LPS has been established, nothing has been reported to date on possible cross talks between LPS and hydrophobic SP-B and SP-C. We designed a new binding technique based on the incorporation of surfactant components to lipid vesicles and the separation of unbound from vesicle-bound LPS on a density gradient. We found that among the different hydrophobic components of mouse surfactant separated by gel filtration or reverse-phase HPLC, only SP-C exhibited the capacity to bind to a tritium-labeled LPS. The binding of LPS to vesicles containing SP-C was saturable, temperature dependent, related to the concentrations of SP-C and LPS, and inhibitable by distinct unlabeled LPSs. Unlike SP-A and SP-D, the binding of SP-C to LPS did not require calcium ions. This LPS binding capacity of SP-C may represent another antibacterial defense mechanism of the lung.  (+info)

Human salivary agglutinin binds to lung surfactant protein-D and is identical with scavenger receptor protein gp-340. (52/423)

Salivary agglutinin is a 300-400 kDa salivary glycoprotein that binds to antigen B polypeptides of oral streptococci, thereby playing a role in their colonization and the development of caries. A mass spectrum was recorded of a trypsin digest of agglutinin. A dominant peak of 1460 Da was sequenced by quadrupole time-of-flight (Q-TOF) tandem MS. The sequence showed 100% identity with part of the scavenger receptor cysteine-rich ('SRCR') domain found in gp-340/DMBT1 (deleted in malignant brain tumours-1). The mass spectrum revealed 11 peaks with an identical mass as a computer-simulated trypsin digest of gp-340. gp-340 is a 340 kDa glycoprotein isolated from bronchoalveolar lavage fluid that binds specifically to lung surfactant protein-D. DMBT1 is a candidate tumour suppressor gene. A search in the human genome revealed only one copy of this gene. The molecular mass, as judged from SDS/PAGE and the amino acid composition of agglutinin, was found to be nearly identical with that of gp-340. It was shown by Western blotting that monoclonal antibodies against gp-340 reacted with salivary agglutinin, and monoclonals against agglutinin reacted with gp-340. It was demonstrated that gp-340 and agglutinin bound in a similar way to Streptococcus mutans and surfactant protein-D. Histochemically, the distribution of gp-340 in the submandibular salivary glands was identical with the agglutinin distribution, as shown in a previous paper [Takano, Bogert, Malamud, Lally and Hand (1991) Anat. Rec. 230, 307-318]. We conclude that agglutinin is identical with gp-340, and that this molecule interacts with S. mutans and surfactant protein-D.  (+info)

Surfactant protein gene A, B, and D marker alleles in chronic obstructive pulmonary disease of a Mexican population. (53/423)

Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation. It is most likely the result of complex interactions of environmental and genetic factors. Because pulmonary surfactant components play important roles in normal lung function, innate host defence, and inflammation in the lung, this study investigated the hypothesis that the surfactant protein genes are involved in certain cases of COPD. Genotype analysis of surfactant protein (SP)-A, SP-B, SP-B-linked microsatellite, and SP-D marker alleles was performed in patients with COPD (n=97) and smoker (n=82) or nonsmoker (n=99) controls. Univariate and multiple logistic regression analyses were performed. The regression analysis results between COPD and smokers revealed several COPD susceptibility alleles (AA62_A, B1580_C, D2S388_5), based on an odds ratio (OR >2.5). The predictive ability of this model for developing COPD is good (c=0.926). Allele-allele (B1580_C and D2S388_5) and allele-environment (i.e. smoking) interactions were detected. When smoker controls were compared to nonsmoker controls, marker D2S388 5 appeared to be smoking-independent (p=0.874), whereas marker alleles AA62_A (p=0.045) and B1580_5 (p=0.007) were smoking-dependent. Males were at higher risk (OR=6.05, p=0.001), and smoking (>50 packs x yr(-1)) increased risk (OR=5.38, p=0.007). Males and alleles of loci flanking SP-B were associated with more severe cases (forced expiratory volume in one second/forced vital capacity < or = 40%). The present results indicate that the surfactant protein alleles may be useful in chronic obstructive pulmonary disease by either predicting the disease in a subgroup and/or by identifying disease subgroups that may be used for therapeutic intervention. These observations should now be confirmed in a larger study, designed according to strict epidemiological criteria.  (+info)

Characteristics of surfactant protein A and D binding to lipoteichoic acid and peptidoglycan, 2 major cell wall components of gram-positive bacteria. (54/423)

Infection with gram-positive bacteria is a major cause of pneumonia. Surfactant proteins A (SP-A) and D (SP-D) are thought to play an important role in the innate immunity of the lung. Both proteins can bind to gram-positive bacteria. Until now, it was not known with which surface component(s) of gram-positive bacteria SP-A and SP-D interact. Lipoteichoic acid (LTA) and peptidoglycan (PepG) are components of the cell wall of gram-positive bacteria. By use of a solid phase-based binding assay, LTA of Bacillus subtilis was shown to be bound by SP-D but not by SP-A. Unmodified PepG of Staphylococcus aureus was bound by SP-D. SP-D binding to both LTA and PepG was calcium dependent and carbohydrate inhibitable. These results indicate that SP-D interacts with gram-positive bacteria via binding to the cell wall components LTA and PepG and that the carbohydrate recognition domain is responsible for this binding.  (+info)

Surfactant protein-D and pulmonary host defense. (55/423)

Surfactant protein-D (SP-D) participates in the innate response to inhaled microorganisms and organic antigens, and contributes to immune and inflammatory regulation within the lung. SP-D is synthesized and secreted by alveolar and bronchiolar epithelial cells, but is also expressed by epithelial cells lining various exocrine ducts and the mucosa of the gastrointestinal and genitourinary tracts. SP-D, a collagenous calcium-dependent lectin (or collectin), binds to surface glycoconjugates expressed by a wide variety of microorganisms, and to oligosaccharides associated with the surface of various complex organic antigens. SP-D also specifically interacts with glycoconjugates and other molecules expressed on the surface of macrophages, neutrophils, and lymphocytes. In addition, SP-D binds to specific surfactant-associated lipids and can influence the organization of lipid mixtures containing phosphatidylinositol in vitro. Consistent with these diverse in vitro activities is the observation that SP-D-deficient transgenic mice show abnormal accumulations of surfactant lipids, and respond abnormally to challenge with respiratory viruses and bacterial lipopolysaccharides. The phenotype of macrophages isolated from the lungs of SP-D-deficient mice is altered, and there is circumstantial evidence that abnormal oxidant metabolism and/or increased metalloproteinase expression contributes to the development of emphysema. The expression of SP-D is increased in response to many forms of lung injury, and deficient accumulation of appropriately oligomerized SP-D might contribute to the pathogenesis of a variety of human lung diseases.  (+info)

KL-6, surfactant protein A and D in bronchoalveolar lavage fluid from patients with pulmonary sarcoidosis. (56/423)

BACKGROUND: KL-6, and surfactant protein A (SP-A) and surfactant protein D (SP-D) derived from alveolar type II cells and/or bronchiolar epithelial cells have been reported to be useful markers for interstitial lung diseases. OBJECTIVE: The aim of this study was to measure the levels of these molecules in bronchoalveolar lavage fluid (BALF) from patients with pulmonary sarcoidosis to investigate their relationship with other markers of inflammatory activity. METHODS: We measured KL-6, SP-A and SP-D levels in BALF from patients with pulmonary sarcoidosis using an ELISA. RESULTS: KL-6 and SP-D, but not SP-A levels were significantly increased in pulmonary sarcoidosis compared with controls. KL-6, SP-A and SP-D levels were significantly correlated with each other. KL-6 and SP-D levels were relatively and significantly correlated with the percentage of lymphocytes in BALF. KL-6, SP-D, but not SP-A levels were significantly correlated with the concentration of albumin in BALF. There was no significant correlation between KL-6, SP-A, or SP-D levels and chest X-ray findings, angiotensin-converting enzyme levels, or CD4/CD8 ratio in BALF. CONCLUSIONS: We conclude that KL-6 and SP-D levels in BALF were increased in pulmonary sarcoidosis. Since these markers are specifically derived from epithelial cells, it is considered that KL-6 and SP-D levels are reflecting damage or release of these markers from epithelial cells due to the inflammatory response.  (+info)