Loss of murine Na+/myo-inositol cotransporter leads to brain myo-inositol depletion and central apnea. (17/212)

myo-Inositol (Ins) and its polyphosphoinositide derivatives that are important in membrane signaling have long been held to play a special role in brain metabolism. As polyphosphoinositides turn over rapidly and are exceptionally abundant in nervous tissue, high Ins levels in the range of 2-15 mm that have been observed in brain may be necessary to maintain the rates of phosphoinositide synthesis in diverse membrane locations within neurons. Cellular concentration gradients of this magnitude indicate a dependence on active Ins transport, especially at the time of growth and differentiation. The Na(+)/myo-inositol cotransporter (SMIT1 or SLC5A3) gene is highly expressed prenatally in the central nervous system and placenta. To gain more insight into brain Ins metabolism, while ascertaining the importance of SMIT1 as a transporter, we generated mice with a homozygous targeted deletion of this gene. Newborn SMIT1(-/-) animals have no evidence of SMIT1 mRNA, a 92% reduction in the level of brain Ins, an 84% reduction in whole body Ins, and expire shortly after birth due to hypoventilation. Gross pathologic and light microscopic examinations of each organ, as well as the placenta, of embryonic day 18.5 fetuses at near term gestation were normal. Based on [(3)H]acetate incorporation into phospholipids of lung tissue explants, immunostaining of lung tissue for surfactant protein A, B, and C, and electron microscopic examination of alveolar cells, there was no evidence of abnormal pulmonary surfactant production by type 2 pneumocytes in lung. Although no histologic lesions were detected in the nervous system, electrophysiological studies of the brainstem pre-Botzinger respiratory control center demonstrated an abnormal rhythm discharge with periods of central apnea. The cause of death can be explained by the regulatory defect in brainstem control of ventilation. This model demonstrates the critical importance of SMIT1 in the developing nervous system. The high affinity SMIT1 transporter is responsible for the Ins concentration gradient in the murine fetal-placental unit.  (+info)

Effects of oligomerization and secondary structure on the surface behavior of pulmonary surfactant proteins SP-B and SP-C. (18/212)

The relationship among protein oligomerization, secondary structure at the interface, and the interfacial behavior was investigated for spread layers of native pulmonary surfactant associated proteins B and C. SP-B and SP-C were isolated either from butanol or chloroform/methanol lipid extracts that were obtained from sheep lung washings. The proteins were separated from other components by gel exclusion chromatography or by high performance liquid chromatography. SDS gel electrophoresis data indicate that the SP-B samples obtained using different solvents showed different oligomerization states of the protein. The CD and FTIR spectra of SP-B isolated from all extracts were consistent with a secondary structure dominated by alpha-helix. The CD and FTIR spectra of the first SP-C corresponded to an alpha-helical secondary structure and the spectra of the second SP-C corresponded to a mixture of alpha-helical and beta-sheet conformation. In contrast, the spectra of the third SP-C corresponded to antiparallel beta-sheets. The interfacial behavior was characterized by surface pressure/area (pi-A) isotherms. Differences in the oligomerization state of SP-B as well as in the secondary structure of SP-C all produce significant differences in the surface pressure/area isotherms. The molecular cross sections determined from the pi-A isotherms and from dynamic cycling experiments were 6 nm(2)/dimer molecule for SP-B and 1.15 nm(2)/molecule for SP-C in alpha-helical conformation and 1.05 nm(2)/molecule for SP-C in beta-sheet conformation. Both the oligomer ratio of SP-B and the secondary structure of SP-C strongly influence organization and behavior of these proteins in monolayer assemblies. In addition, alpha-helix --> beta-sheet conversion of SP-C occurs simply by an increase of the summary protein/lipid concentration in solution.  (+info)

In vivo tracheal occlusion in fetal mice induces rapid lung development without affecting surfactant protein C expression. (19/212)

Fetal tracheal occlusion (TO) reverses lung hypoplasia by inducing rapid lung growth. Although increases in lung size accompanied by increased numbers of alveoli and capillaries have been reported, effects of TO on lung development have not been formally assessed. In the present study, the objective was to verify our prediction that the main effect of TO would be to accelerate fetal lung development. We have developed and characterized a new fetal mouse model of TO to best realize this goal. At embryonic day 16.5, pregnant CD1 mice were operated under general anesthesia. One fetus per dam was selected to undergo surgical TO with a surgical clip or a sham operation. The fetuses were delivered 24 or 36 h postsurgery. The maturation of lung parenchyma, evaluated by counting the generations of alveolar saccules from the terminal bronchiole to the pleura, was significantly accelerated in the TO group with a complexity of the gas exchange region comparable with postnatal days 1 and 3 after 24 or 36 h of TO. Cellular proliferation and apoptosis peaks, assessed by immunohistochemistry directed against PCNA and the active form of caspase-3, were significantly increased 24 h after surgery in the TO group compared with the sham group. However, in situ hybridization showed no significant difference in the density of type II pneumocytes expressing surfactant protein C mRNA. Our results show that brief TO during late gestation in fetal mice induces accelerated lung development with minimal effects on surfactant protein C mRNA expression.  (+info)

SP-B deficiency causes respiratory failure in adult mice. (20/212)

Targeted deletion of the surfactant protein (SP)-B locus in mice causes lethal neonatal respiratory distress. To assess the importance of SP-B for postnatal lung function, compound transgenic mice were generated in which the mouse SP-B cDNA was conditionally expressed under control of exogenous doxycycline in SP-B-/- mice. Doxycycline-regulated expression of SP-B fully corrected lung function in compound SP-B-/- mice and protected mice from respiratory failure at birth. Withdrawal of doxycycline from adult compound SP-B-/- mice resulted in decreased alveolar content of SP-B, causing respiratory failure when SP-B concentration was reduced to <25% of normal levels. Decreased SP-B was associated with low alveolar content of phosphatidylglycerol, accumulation of misprocessed SP-C proprotein in the air spaces, increased protein content in bronchoalveolar lavage fluid, and altered surfactant activity in vitro. Consistent with surfactant dysfunction, hysteresis, maximal tidal volumes, and end expiratory volumes were decreased. Reduction of alveolar SP-B content causes surfactant dysfunction and respiratory failure, indicating that SP-B is required for postnatal lung function.  (+info)

Lung CD25 CD4 regulatory T cells suppress type 2 immune responses but not bronchial hyperreactivity. (21/212)

To study the effects of chronic Ag deposition in the airway mucosa on CD4(+) T cell priming and subsequent airway disease, transgenic mice were generated that expressed OVA under the control of the surfactant protein C promoter. CD4 T cells from these mice were tolerant to OVA but this was overcome among spleen CD4 T cells by crossing to OVA-specific DO11.10 TCR-transgenic mice. Lungs from the double-transgenic mice developed lymphocytic infiltrates and modest mucus cell hyperplasia. Infiltrating cells were unaffected by the absence of either Rag-1 or Stat6, although the latter deficiency led to the disappearance of mucus. In the lung of double-transgenic mice, a large number of Ag-specific CD4 T cells expressed CD25 and functioned as regulatory T cells. The CD25(+) CD4 T cells suppressed proliferation of CD25(-) CD4 T cells in vitro and inhibited type 2 immune responses induced by aerosolized Ags in vivo. Despite their ability to suppress allergic type 2 immunity in the airways, however, CD25(+) CD4 regulatory T cells had no effect on the development of bronchial hyperreactivity.  (+info)

Induced repatterning of type XVIII collagen associates with ectopic Sonic hedgehog and lung surfactant C gene expression and changes in epithelial epigenesis in the ureteric bud. (22/212)

How cell and tissue interactions lead to complex organ structures and differentiated cell types during organogenesis is one of the most fundamental questions in developmental biology. The embryonic lung and kidney of the mouse are useful models for studying the molecular mechanisms of morphogenesis, and in both of these organs, the epithelial bud undergoes a characteristic branching process. This review discusses the potential role of an extracellular matrix molecule, type XVIII collagen, in the generation of the branching patterns in the lung and kidney and how its experimental respecification in tissue recombinants between the ureteric bud and lung mesenchyme correlates with changes in expression of signaling molecules such as sonic hedgehog and changes in cell fate as judged by ectopic expression of the lung surfactant C gene.  (+info)

Inhaled nitric oxide increases surfactant protein gene expression in the intact lamb. (23/212)

Inhaled nitric oxide (iNO) is used to treat a number of disease processes. Although in vitro data suggest that nitric oxide (NO) alters surfactant protein gene expression, the effects in vivo have not been studied. The objective of this study was to evaluate the effects of iNO on surfactant protein (SP)-A, -B, and -C gene expression in the intact lamb. Thirteen 4-wk-old lambs were mechanically ventilated with 21% oxygen and received iNO at 40 ppm (n = 7) or vehicle gas (n = 6) for 24 h. Peripheral lung biopsies were obtained at 0, 12, and 24 h and analyzed for surfactant mRNA, protein, and total DNA content. Inhaled NO increased SP-A and SP-B mRNA content by 80% from 0 to 12 h and by 78 and 71%, respectively, from 0 to 24 h. There was an increase in SP-A and SP-B protein content by 45% from 0 to 12 h, and a decrease by 70 and 65%, respectively, from 0 to 24 h. DNA content was unchanged. The mechanisms and physiological effects of these findings warrant further investigation.  (+info)

Changes in alveolar epithelial cell proportions during fetal and postnatal development in sheep. (24/212)

Basal lung expansion is an important determinant of alveolar epithelial cell (AEC) phenotype in the fetus. Because basal lung expansion increases toward term and is reduced after birth, we hypothesized that these changes would be associated with altered proportions of AECs. AEC proportions were calculated with electron microscopy in fetal and postnatal sheep. Type I AECs increased from 4.8 +/- 1.3% at 91 days to 63.0 +/- 3.6% at 111 days of gestation, remained at this level until term, and decreased to 44.8 +/- 1.8% after birth. Type II AECs increased from 4.3 +/- 1.5% at 111 days to 29.6 +/- 4.1% at 128 days of gestation, remained at this level until term, and then increased to 52.9 +/- 1.5% after birth. Surfactant protein (SP)-A, -B and -C mRNA levels increased with increasing gestational age before birth, but the changes in SP expression after birth were inconsistent. Thus before birth type I AECs predominate, whereas after birth type II AECs predominate, possibly due to the reduction in basal lung expansion associated with the entry of air into the lungs.  (+info)