Interactions of pulmonary surfactant protein SP-A with monolayers of dipalmitoylphosphatidylcholine and cholesterol: roles of SP-A domains. (9/585)

Pulmonary surfactant protein A (SP-A) is an oligomeric glycoprotein that binds dipalmitoylphosphatidylcholine (DPPC). Interactions of rat SP-A and recombinant SP-As with pure and binary monolayers of DPPC and cholesterol were studied using a rhomboid surface balance at 37 degrees C. A marked inflection at equilibrium surface tension (23 mN/m) in surface tension-area isotherm of a pure DPPC film was abolished by rat SP-A. The inflection was decreased and shifted to 18 mN/m with wild-type recombinant SP-A (SP-Ahyp). Both rat SP-A and SP-Ahyp decreased surface area reduction required for pure DPPC films to reach near zero surface tension from 30 to 25%. SP-Ahyp, E195Q,R197D, mutated in carbohydrate recognition domain (CRD) known to be essential for SP-A-vesicle interactions, conveyed a detrimental effect on DPPC surface activity. SP-ADeltaG8-P80, with deletion of collagen-like domain, had little effect. Both SP-Ahyp, C6S (Ser substitution for Cys6) and SP-Ahyp,DeltaN1-A7 (N-terminal segment deletion) which appear mainly as monomers on non-reducing SDS-PAGE analysis, increased required surface area reduction for minimal surface tension. All SP-As reduced collapse surface tension of a pure cholesterol film from 27 to 23 mN/m in the presence of Ca2+. When mixed films were formed by successive spreading of DPPC/SP-A/cholesterol, rat SP-A, SP-Ahyp, or SP-ADeltaG8-P80 blocked the interaction of cholesterol with DPPC; SP-Ahyp,E195Q,R197D could not impede the interaction; SP-Ahyp,C6S or SP-Ahyp,DeltaN1-A7 only partially blocked the interaction, and cholesterol appeared to stabilize SP-Ahyp,C6S-DPPC association. These results demonstrate the importance of CRD and N-terminal dependent oligomerization in SP-A-phospholipid associations. The findings further indicate that SP-A-cholesterol interactions differ from SP-A-DPPC interactions and may be nonspecific.  (+info)

Glucocorticoid inhibition of human SP-A1 promoter activity in NCI-H441 cells. (10/585)

Glucocorticoids have complex effects on human surfactant protein (SP) SP-A1 and SP-A2 gene expression that occur at both transcriptional and post-transcriptional levels. In the lung adenocarcinoma cell line NCI-H441, dexamethasone causes a dose-dependent decrease in total SP-A mRNA levels and inhibits SP-A gene transcription. In this study, a deletional analysis of the SP-A1 promoter was performed in order to identify cis-acting elements that mediate dexamethasone responsiveness in NCI-H441 cells. The region -32/+63 relative to the start of SP-A1 transcription mediated both basal promoter activity and dexamethasone repression of transcription. Removal of the region +18/+63 abolished dexamethasone responsiveness, indicating that sequences within this region are necessary for the inhibitory effect. Furthermore, the region -32/+63 formed a sequence-specific DNA-protein complex with NCI-H441 nuclear extract. This DNA-protein complex was induced by dexamethasone exposure and its formation was mediated partially by sequences within the region +26/+63.  (+info)

SP-A 3'-UTR is involved in the glucocorticoid inhibition of human SP-A gene expression. (11/585)

The synthetic glucocorticoid dexamethasone has a major inhibitory effect on human surfactant protein A1 (SP-A1) and SP-A2 gene expression that occurs at both the transcriptional and posttranscriptional levels. Toward the identification of cis-acting elements that may be involved in the dexamethasone regulation of SP-A mRNA stability, chimeric chloramphenicol acetyltransferase (CAT) constructs that contained various portions of SP-A1 or SP-A2 cDNA in place of the native CAT 3'-untranslated region (UTR) were transiently transfected into the lung adenocarcinoma cell line NCI-H441. CAT activity was reduced in NCI-H441 cells by exposure to 100 nM dexamethasone only for the chimeric CAT constructs that contained the SP-A 3'-UTR. Moreover, the inhibitory response seen with dexamethasone was greater for the 3'-UTR derived from the SP-A1 allele 6A3 than with the 3'-UTR derived from either the SP-A1 allele 6A2 or SP-A2 allele 1A0, indicating differential regulation between SP-A genes and/or alleles.  (+info)

Brief 95% O2 exposure effects on surfactant protein and mRNA in rat alveolar and bronchiolar epithelium. (12/585)

In acute lung injury, a disturbed surfactant system may impair gas exchange. Previous evaluations of hyperoxia effects on surfactant proteins (SPs) followed exposures >1-2 days. To evaluate the effects of brief exposure to hyperoxia on the SP system, we exposed adult male rats to 95% O2 or air for 12, 36, and 60 h. SP-A, -B, and -C mRNAs were analyzed by Northern blot and semiquantitative in situ hybridization (ISH). SP-A and -B were analyzed in whole lung homogenates, lung lavage fluid, and fixed tissue by semiquantitative immunohistochemistry (IHC). All SP mRNAs were diminished at 12 h and rose to or exceeded control by 60 h as determined by Northern blot and ISH. These effects were seen mainly in the intensity of ISH signal per cell in both type II and bronchiolar epithelial (Clara) cells and to a lesser extent on numbers of positively labeled cells. SP-B declined to 50% of control in lavage at 12 h, but no changes in total lung SP-A and -B were seen. The number of SP-A positively labeled cells did not change, but SP-A label intensity measured by IHC in type II cells showed parallel results to Northern blots and ISH. The response of SP-A in Clara cells was similar. SP-B immunolabeling intensity rose in both type II and Clara cells throughout the exposure. SP-C ISH intensity fell at 12 h and was increased to two times control by 60 h of hyperoxia. Sharp declines in SP expression occurred by 12 h of 95% O2 and may affect local alveolar stability.  (+info)

Characterization of the Ca2+-dependent binding of annexin IV to surfactant protein A. (13/585)

We have shown previously that surfactant protein A (SP-A) binds to annexin IV in a Ca2+-dependent manner [Sohma, Matsushima, Watanabe, Hattori, Kuroki and Akino (1995) Biochem. J. 312, 175-181]. Annexin IV is a member of the annexin family having four consensus repeats of about 70 amino acids and a unique N-terminal tail. In the present study, the functional site of both annexin IV and SP-A for the Ca2+-dependent binding was investigated using mutant proteins. SP-A bound in a Ca2+-dependent manner to an annexin-IV truncation mutant consisting of the N-terminal domain and the first three domains (T(N-1-2-3)). SP-A also bound to T3-4, but this interaction was not Ca2+-dependent. SP-A bound weakly to the other truncation mutants (T(N-1-2), T(2-3) and T(2-3-4)). Each consensus repeat of annexin IV possesses a conserved acidic amino acid residue (Glu70, Asp142, Glu226 and Asp301) that putatively ligates Ca2+. Using annexin-IV DE mutants in which one, two or three residues out of the four Asp/Glu were altered to Ala by site-directed mutagenesis [Nelson and Creutz (1995) Biochemistry 34, 3121-3132], it was revealed that Ca2+ binding in the third domain is more important than in the other Ca2+-binding sites. SP-A is a member of the animal lectin group homologous with mannose-binding protein A. The substitution of Arg197 of rat SP-A with Asp or Asn eliminated binding to annexin IV, whereas the substitution of Glu195 with Gln was silent. These results suggest that the Ca2+ binding to domain 3 of annexin IV is required for the Ca2+-dependent binding by SP-A and that Arg197 of SP-A is important in this binding.  (+info)

Pulmonary surfactant protein A modulates the cellular response to smooth and rough lipopolysaccharides by interaction with CD14. (14/585)

Pulmonary surfactant protein A (SP-A) plays an important part in Ab-independent host defense mechanisms of the lung. In this study we investigated how SP-A interacts with distinct serotypes of bacterial LPS and modulates LPS-elicited cellular responses. SP-A bound to rough forms but not to smooth forms of LPS. In the macrophage-like cell line U937, SP-A inhibited mRNA expression and secretion of TNF-alpha induced by smooth LPS, but rough LPS-induced TNF-alpha expression was unaffected by SP-A. When U937 cells and rat alveolar macrophages were preincubated with SP-A, smooth LPS failed to induce TNF-alpha secretion, whereas rough LPS-induced TNF-alpha secretion was modestly increased. To clarify the mechanism by which SP-A modulates LPS-elicited cellular responses, we further examined the interaction of SP-A with CD14, which is known as a major LPS receptor. Western blot analysis revealed that CD14 was one of the SP-A binding proteins isolated from solubilized U937 cells. In addition, SP-A directly bound to recombinant soluble CD14 (rsCD14). When rsCD14 was preincubated with SP-A, the binding of rsCD14 to smooth LPS was significantly reduced but the association of rsCD14 with rough LPS was augmented. These results demonstrate the different actions of SP-A upon distinct serotypes of LPS and indicate that the direct interaction of SP-A with CD14 constitutes a likely mechanism by which SP-A modulates LPS-elicited cellular responses.  (+info)

Transcriptional activation and protein binding by two regions of the rat surfactant protein A promoter. (15/585)

Surfactant protein A (SP-A) is expressed in lung alveolar type II cells and bronchiolar Clara cells. We have identified two active regions in the promoter of the rat SP-A gene by deletion analysis of a plasmid containing 163 bp before the start of transcription (-163 bp), linked to a reporter gene. Constructs were transfected into lung cell lines derived from each of the cell types that produces SP-A. We found a novel region of promoter activity at approximately 90 bp before the transcriptional start (SP-A(-90)). Mutation of four nucleotides in SP-A(-90) that are highly conserved among species (-92 to -89 bp) decreased expression of the SP-A construct by approximately 50% in both cell lines. Electrophoretic mobility shift analysis showed specific binding to SP-A(-90) by nuclear proteins from the cell lines, as well as from rat lung and liver. The electrophoretic mobility of the bands shifted by lung nuclear proteins changed late in fetal development. Although in the Clara cell line no reduction of promoter activity was seen on deletion of the region upstream of SP-A(-90), in the type II cell line, deletion of residues -163 to -133 did reduce activity by approximately 50%. This region contains a recognition element for thyroid transcription factor-1 (TTF-1). Endogenous TTF-1 binding activity was substantially higher in the type II cell line than in the Clara cell line, but cotransfection of a TTF-1 expression plasmid enhanced expression of the SP-A construct better in the Clara cell line than in the type II cell line. These results suggest that the recognition element for TTF-1 has varying activity in the lung cell lines of different origin due to the availability of TTF-1.  (+info)

Analysis of genomic regions involved in regulation of the rabbit surfactant protein A gene in transgenic mice. (16/585)

The gene encoding surfactant protein (SP) A, a developmentally regulated pulmonary surfactant-associated protein, is expressed in a lung-specific manner, primarily in pulmonary type II cells. SP-A gene transcription in the rabbit fetal lung is increased by cAMP. To delineate the genomic regions involved in regulation of SP-A gene expression, lines of transgenic mice carrying fusion genes composed of various amounts of 5'-flanking DNA from the rabbit SP-A gene linked to the human growth hormone structural gene as a reporter were established. We found that as little as 378 bp of 5'-flanking DNA was sufficient to direct appropriate lung cell-selective and developmental regulation of transgene expression. The same region was also sufficient to mediate cAMP induction of transgene expression. Mutagenesis or deletion of either of two DNA elements, proximal binding element and a cAMP response element-like sequence, previously found to be crucial for cAMP induction of SP-A promoter activity in transfected type II cells, did not affect lung-selective or temporal regulation of expression of the transgene; however, overall levels of fusion gene expression were reduced compared with those of wild-type transgenes.  (+info)