Adaptations in skeletal muscle exercise metabolism to a sustained session of heavy intermittent exercise. (65/1644)

The purpose of this study was to investigate the hypothesis that a single, extended session of heavy exercise would be effective in inducing adaptations in energy metabolism during exercise in the absence of increases in oxidative potential. Ten healthy males [maximal aerobic power (VO(2 peak)) = 43.4 +/- 2.2 (SE) ml x kg(-1) x min(-1)] participated in a 16-h training session involving cycling for 6 min each hour at approximately 90% of maximal oxygen consumption. Measurements of metabolic changes were made on tissue extracted from the vastus lateralis during a two-stage standardized submaximal cycle protocol before (Pre) and 36-48 h after (Post) the training session. At Pre, creatine phosphate (PCr) declined (P < 0.05) by 32% from 0 to 3 min and then remained stable until 20 min of exercise at 60% VO(2 peak) before declining (P < 0.05) by a further 35% during 20 min of exercise at 75% VO(2 peak). Muscle lactate (mmol/kg dry wt) progressively increased (P < 0.05) from 4.59 +/- 0.64 at 0 min to 17.8 +/- 2.7 and 30.9 +/- 5.3 at 3 and 40 min, respectively, whereas muscle glycogen (mmol glucosyl units/kg dry wt) declined (P < 0.05) from a rest value of 360 +/- 24 to 276 +/- 31 and 178 +/- 36 at similar time points. During exercise after the training session, PCr and glycogen were not as depressed (P < 0.05), and increases in muscle lactate were blunted (P < 0.05). All of these changes occurred in the absence of increases in oxidative potential as measured by the maximal activities of citrate synthase and malate dehydrogenase. These findings are consistent with other studies, namely, that muscle metabolic adaptations to regular exercise are an early adaptive event that occurs before increases in oxidative potential.  (+info)

Effect of recombinant SP-C surfactant in a porcine lavage model of acute lung injury. (66/1644)

Synthetic surfactants allow examination of the effects of specific components of natural surfactant. To determine whether surfactant containing apoprotein C, dipalmitoyl-phosphatidylcholine, phosphatidylglycerol, and palmitic acid restores gas-exchanging function in acute lung injury (ALI), we administered such surfactant (in doses of 50 or 100 mg/kg and in volumes from 1 to 6 ml/kg) or phospholipid (PL) alone, by intratracheal instillation, to pigs with ALI induced by massive saline lavage. Animals ventilated with 100% O(2) and receiving 1, 2, 4, or 6 ml/kg of 50 mg/kg recombinant surfactant apoprotein C (rSP-C) surfactant or 2 ml/kg of 50 mg/kg PL (control) had mean arterial PO(2) values, 4 h after treatment, of 230, 332, 130, 142, or 86 Torr, respectively. Animals receiving 1, 2, or 4 ml/kg of 100 mg/kg rSP-C surfactant or 2 ml/kg of 100 mg/kg PL (control) had mean arterial PO(2) values of 197, 214, 148, or 88 Torr, respectively. Surfactant PL distribution was homogeneous. Hyaline membrane formation was reduced in treated animals. Thus, in this model of ALI, rSP-C with PL has the capacity to improve gas exchange and possibly modify lung injury.  (+info)

Effect of menstrual cycle phase on carbohydrate supplementation during prolonged exercise to fatigue. (67/1644)

The effects of menstrual cycle phase and carbohydrate (CHO) supplementation were investigated during prolonged exercise. Nine healthy, moderately trained women cycled at 70% peak O(2) consumption until exhaustion. Two trials were completed during the follicular (Fol) and luteal (Lut) phases of the menstrual cycle. Subjects consumed 0.6 g CHO. kg body wt(-1). h(-1) (5 ml/kg of a 6% CHO solution every 30 min beginning at min 30 of exercise) or a placebo drink (Pl) during exercise. Time to exhaustion during CHO increased from Pl values (P < 0.05) by 14.4 +/- 8.5 (Fol) and 11.4 +/- 7.1% (Lut); no differences were observed between menstrual cycle phases. CHO attenuated (P < 0.05) the decrease in plasma glucose and insulin and the increase in plasma free fatty acids, tryptophan, epinephrine, and cortisol observed during Pl for both phases. Plasma alanine, glutamine, proline, and isoleucine were lower (P < 0.05) in Lut than in Fol phase. CHO resulted in lower (P < 0.05) plasma tyrosine, valine, leucine, isoleucine, and phenylalanine. These results indicate that the menstrual cycle phase does not alter the effects of CHO supplementation on performance and plasma levels of related substrates during prolonged exercise.  (+info)

Ventilation heterogeneity does not change following pulmonary microembolism. (68/1644)

By using the multiple-breath helium washout technique, ventilation heterogeneity (VH) after embolic injury in the lung can be quantitatively partitioned into the conductive and acinar components. Total VH, represented by the normalized slope of the phase III alveolar plateau, Sn(III (total)), was studied for 120 min in three groups of anesthetized and paralyzed mongrel dogs. Group 1 (n = 3) received only normal saline and served as controls. Group 2 (n = 4) received repeated infusions of polystyrene beads (250 microm) into the right atrium at 10, 40, 80, and 120 min. Group 3 (n = 3) was similarly treated, except that the embolic beads used were 1,000 microm in diameter. The data show that, despite repeated embolic injury by polystyrene beads of different diameters, there was no significant increase in total VH. The acinar component of Sn(III), which represents VH in the distal airways, accounts for over 90% of the total VH. The conductive component of Sn(III), which represents VH between larger conductive airways, remains relatively constant and a minor component. We conclude that pulmonary microembolism does not result in significant redistribution of ventilation.  (+info)

Carbonic anhydrase inhibition delays plasma lactate appearance with no effect on ventilatory threshold. (69/1644)

The effect of carbonic anhydrase (CA) inhibition with acetazolamide (Acz, 10 mg/kg body wt iv) on exercise performance and the ventilatory (VET) and lactate (LaT) thresholds was studied in seven men during ramp exercise (25 W/min) to exhaustion. Breath-by-breath measurements of gas exchange were obtained. Arterialized venous blood was sampled from a dorsal hand vein and analyzed for plasma pH, PCO(2), and lactate concentration ([La(-)](pl)). VET [expressed as O(2) uptake (VO(2)), ml/min] was determined using the V-slope method. LaT (expressed as VO(2), ml/min) was determined from the work rate (WR) at which [La(-)](pl) increased 1.0 mM above rest levels. Peak WR was higher in control (Con) than in Acz sutdies [339 +/- 14 vs. 315 +/- 14 (SE) W]. Submaximal exercise VO(2) was similar in Acz and Con; the lower VO(2) at exhaustion in Acz than in Con (3.824 +/- 0. 150 vs. 4.283 +/- 0.148 l/min) was appropriate for the lower WR. CO(2) output (VCO(2)) was lower in Acz than in Con at exercise intensities >/=125 W and at exhaustion (4.375 +/- 0.158 vs. 5.235 +/- 0.148 l/min). [La(-)](pl) was lower in Acz than in Con during submaximal exercise >/=150 W and at exhaustion (7.5 +/- 1.1 vs. 11.5 +/- 1.1 mmol/l). VET was similar in Acz and Con (2.483 +/- 0.086 and 2.362 +/- 0.110 l/min, respectively), whereas the LaT occurred at a higher VO(2) in Acz than in Con (2.738 +/- 0.223 vs. 2.190 +/- 0.235 l/min). CA inhibition with Acz is associated with impaired elimination of CO(2) during the non-steady-state condition of ramp exercise. The similarity in VET in Con and Acz suggests that La(-) production is similar between conditions but La(-) appearance in plasma is reduced and/or La(-) uptake by other tissues is enhanced after the Acz treatment.  (+info)

Muscle metabolism during heavy-intensity exercise after acute acetazolamide administration. (70/1644)

Carbonic anhydrase (CA) inhibition is associated with a lower plasma lactate concentration ([La(-)](pl)), but the mechanism for this association is not known. The effect of CA inhibition on muscle high-energy phosphates [ATP and phosphocreatine (PCr)], lactate ([La(-)](m)), and glycogen was examined in seven men [28 +/- 3 (SE) yr] during cycling exercise under control (Con) and acute CA inhibition with acetazolamide (Acz; 10 mg/kg body wt iv). Subjects performed 6-min step transitions in work rate from 0 W to a work rate corresponding to approximately 50% of the difference between the O(2) uptake at the ventilatory threshold and peak O(2) uptake. Muscle biopsies were taken from the vastus lateralis at rest, at 30 min postinfusion, at end exercise (EE), and at 5 and 30 min postexercise. Arterialized venous blood was sampled from a dorsal hand vein and analyzed for [La(-)](pl). ATP was unchanged from rest values; no difference between Con and Acz was observed. The fall in PCr from rest [72 +/- 3 and 73 +/- 3.6 (SE) mmol/kg dry wt for Con and Acz, respectively] to EE (51 +/- 4 and 46 +/- 5 mmol/kg dry wt for Con and Acz, respectively) was similar in Con and Acz. At EE, glycogen (mmol glucosyl units/kg dry wt) decreased to similar values in Con and Acz (307 +/- 16 and 300 +/- 19, respectively). At EE, no difference was observed in [La(-)](m) between conditions (46 +/- 6 and 43 +/- 5 mmol/kg dry wt for Con and Acz, respectively). EE [La(-)](pl) was higher during Con than during Acz (11.4 +/- 1.0 vs. 8.2 +/- 0.6 mmol/l). The similar [La(-)](m) but lower [La(-)](pl) suggests that the uptake of La(-) by other tissues is enhanced after CA inhibition.  (+info)

Enhanced endothelium-dependent vasodilation in older endurance-trained men. (71/1644)

We hypothesized that abnormal endothelium-dependent vasodilation (EDD) found in older otherwise healthy subjects can be attenuated with long-term endurance training. Ten endurance-trained men, 68.5 +/- 2.3 yr old, and 10 healthy sedentary men, 64.7 +/- 1.4 yr old, were studied. Aerobic exercise capacity (VO(2 max)), fasting plasma cholesterol, insulin, and homocysteine concentrations were measured. Master athletes had higher VO(2 max) (42 +/- 2.3 vs. 27 +/- 1.4 ml. kg(-1). min(-1), P < 0.001), slightly higher total cholesterol (226 +/- 8 vs. 199 +/- 8 mg/dl, P = 0.05), similar insulin, and higher homocysteine (10.7 +/- 1.3 vs. 9.2 +/- 1.4 micromol/ml, p = 0.02) concentrations. Brachial arterial diameter, determined with vascular ultrasound, during the hyperemic response was greater in the master athletes than in controls (P = 0.005). Peak vasodilatory response was 109.1 +/- 2 vs. 103.6 +/- 2% (P < 0.05) in the athletes and controls, respectively. Endothelium-independent vasodilation in response to nitroglycerin was similar between the two groups. The increased arterial diameter during the hyperemic response correlated significantly with the VO(2 max) in the entire population (r = 0.66, P < 0.002). Our results suggest that long-term endurance exercise training in older men is associated with systemic enhanced EDD, which is even detectable in the conduit arteries of untrained muscle.  (+info)

Influence of muscle fibre type and fitness on the oxygen uptake/power output slope during incremental exercise in humans. (72/1644)

We recently reported that a higher percentage of type I fibres in vastus lateralis and a greater peak oxygen uptake (O2) were associated with a greater initial rise in O2 (O2 /W, where W is work rate) following the onset of heavy constant power output exercise (above the lactate threshold, LT). It was unclear if these results were true only for heavy exercise, or if the association between fibre type and/or fitness and O2 /W would also be seen for moderate (< LT) exercise. The purpose of the present study was to compare the relationships between fibre type or peak O2 and O2 /W determined for moderate (< LT) and heavy (> LT) exercise intensities during incremental exercise. Nine healthy subjects performed an incremental ramp test on a cycle ergometer. The O2 /Wslope was calculated for the domain of power outputs up to the LT (S1), from the LT towards peak O2 (S2), and over the entire linear portion of the O2 /W response (ST), and compared to fibre type distribution determined from biopsy of the vastus lateralis, and to peak O2 (as ml kg-1 min-1). Significant correlations between O2 /W and the proportion of type I fibres were found for each exercise domain (r is 0.69, 0.71 and 0.84 for S1, S2 and ST, respectively, P < 0.05). S1 ranged between about 9 ml min-1 W-1 for a low proportion of type I fibres and 11 ml min-1 W-1 for a high proportion of type I fibres. Similar correlations were also found between S2 (r = 0.70) and ST (r = 0.76) and peak O2. These results are consistent with our previous findings during > LT constant power output exercise, and suggest that the proportion of type I fibres, and possibly fitness as indicated by peak O2, is associated with greater O2 /W during the initial adjustment to < LT as well as > LT exercise. These results do not appear to be explained by classical descriptions of the kinetics of adjustment of O2 following the onset of ramp or constant power output exercise. They might reflect enhanced motor unit recruitment in subjects with a greater percentage of type I fibres, and/or who are more aerobically fit. However, the underlying mechanism for these findings must await further study.  (+info)