Postpneumonectomy alveolar growth does not normalize hemodynamic and mechanical function. (57/4148)

Immature foxhounds underwent 55% lung resection by right pneumonectomy (n = 5) or thoracotomy without pneumonectomy (Sham, n = 6) at 2 mo of age. Cardiopulmonary function was measured during treadmill exercise on reaching maturity 1 yr later. In pneumonectomized animals compared with Sham animals, maximal oxygen uptake, ventilatory response, and cardiac output during exercise were normal. Arterial and mixed venous blood gases and arteriovenous oxygen extraction during exercise were also normal. Mean pulmonary arterial pressure and resistance were elevated at a given cardiac output. Dynamic ventilatory power requirement was also significantly elevated at a given minute ventilation. These long-term hemodynamic and mechanical abnormalities are in direct contrast to the normal pulmonary gas exchange during exercise in these same pneumonectomized animals reported elsewhere (S. Takeda, C. C. W. Hsia, E. Wagner, M. Ramanathan, A. S. Estrera, and E. R. Weibel. J. Appl. Physiol. 86: 1301-1310, 1999). Functional compensation was superior in animals pneumonectomized as puppies than as adults. These data indicate a limited structural response of conducting airways and extra-alveolar pulmonary blood vessels to pneumonectomy and suggest the development of other sources of adaptation such as those involving the heart and respiratory muscles.  (+info)

Effect of epinephrine on alveolar liquid clearance in the rat. (58/4148)

Endogenous epinephrine has been found to increase alveolar liquid clearance (ALC) in several pulmonary edema models. In this study, we infused epinephrine intravenously for 1 h in anesthetized rats to produce plasma epinephrine concentrations commonly observed in this species under stressful conditions and measured ALC by mass balance. Epinephrine increased ALC from 31.5 +/- 3.2 to 48.9 +/- 1.1 (SE)% of the instilled volume (P < 0.05). The increased ALC was prevented by either propranolol or amiloride. To determine whether ALC returns to normal after plasma epinephrine concentration normalizes, we measured ALC 2 h after stopping an initial 1-h epinephrine infusion and found ALC to be at baseline values. Finally, to determine whether desensitization of the liquid clearance response occurs, we evaluated the effects of both repeated 1-h infusions and a continuous 4-h infusion of epinephrine on ALC and found no reduction in ALC under either condition. We conclude that epinephrine increases ALC by stimulating beta-adrenoceptors and sodium transport, that the increase is reversible once plasma epinephrine concentration normalizes, and that desensitization of the ALC response does not appear to occur after 4 h of continuous epinephrine exposure.  (+info)

Mechanical stretching of alveolar epithelial cells increases Na(+)-K(+)-ATPase activity. (59/4148)

Alveolar epithelial cells effect edema clearance by transporting Na(+) and liquid out of the air spaces. Active Na(+) transport by the basolaterally located Na(+)-K(+)-ATPase is an important contributor to lung edema clearance. Because alveoli undergo cyclic stretch in vivo, we investigated the role of cyclic stretch in the regulation of Na(+)-K(+)-ATPase activity in alveolar epithelial cells. Using the Flexercell Strain Unit, we exposed a cell line of murine lung epithelial cells (MLE-12) to cyclic stretch (30 cycles/min). After 15 min of stretch (10% mean strain), there was no change in Na(+)-K(+)-ATPase activity, as assessed by (86)Rb(+) uptake. By 30 min and after 60 min, Na(+)-K(+)-ATPase activity was significantly increased. When cells were treated with amiloride to block amiloride-sensitive Na(+) entry into cells or when cells were treated with gadolinium to block stretch-activated, nonselective cation channels, there was no stimulation of Na(+)-K(+)-ATPase activity by cyclic stretch. Conversely, cells exposed to Nystatin, which increases Na(+) entry into cells, demonstrated increased Na(+)-K(+)-ATPase activity. The changes in Na(+)-K(+)-ATPase activity were paralleled by increased Na(+)-K(+)-ATPase protein in the basolateral membrane of MLE-12 cells. Thus, in MLE-12 cells, short-term cyclic stretch stimulates Na(+)-K(+)-ATPase activity, most likely by increasing intracellular Na(+) and by recruitment of Na(+)-K(+)-ATPase subunits from intracellular pools to the basolateral membrane.  (+info)

Functional expression of chemokine receptor CXCR4 on human epithelial cells. (60/4148)

Chemokines and their receptors play an important role in the process of leucocyte recruitment at sites of inflammation. However, recent evidence suggests that these proteins can also regulate non-leucocyte cell functions such as angiogenesis, migration and proliferation. We have investigated the expression of the CXC chemokine receptor 4 (CXCR4) on primary cultures of type II alveolar epithelial cells, their transformed counterpart, the A549 cell line and also on other epithelial cell lines from various tissues. We found that all epithelial cell types tested express mRNA for CXCR4. Flow cytometric analysis and immunocytochemical staining shows that CXCR4 chemokine receptor is abundantly expressed on the surface of A549 epithelial cells. Furthermore, A549 cells responded to the CXCR4 ligand, stromal-derived factor-1alpha (SDF-1alpha) with a rapid and robust calcium mobilization and not to other CXC chemokines, suggesting that CXCR4 is functionally active and is able to couple to G-protein signalling mechanisms. A549 cells did not proliferate in response to either SDF-1alpha or interleukin-8 (IL-8) CXC chemokines. These findings may have important implications for epithelial physiology and pathology.  (+info)

Biotransformation of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in freshly isolated human lung cells. (61/4148)

Metabolism of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) was characterized in human lung cells isolated from peripheral lung specimens obtained from 12 subjects during clinically indicated lobectomy. NNK biotransformation was assessed in preparations of isolated unseparated cells (cell digest), as well as in preparations enriched in alveolar type II cells, and alveolar macrophages. Metabolite formation was expressed as a percentage of the total recovered radioactivity from [5-(3)H]NNK and its metabolites per 10(6) cells per 24 h. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) was the major metabolite formed in all lung cell preparations examined, and its formation ranged from 0.50 to 13%/10(6) cells/24 h. Formation of alpha-carbon hydroxylation end-point metabolites (bioactivation) and pyridine N-oxidation metabolites (detoxification), ranged from non-detectable to 0.60% and from non-detectable to 1.5%/10(6) cells/24 h, respectively, reflecting a large degree of intercellular and inter-individual variability in NNK metabolism. Formation of the alpha-hydroxylation end-point metabolite 4-hydroxy-1-(3-pyridyl)-1-butanol (diol) was consistently higher in alveolar type II cells than in cell digest or alveolar macrophages (0.0146 +/- 0.0152, 0.0027 +/- 0.0037 and 0.0047 +/- 0.0063%/10(6) cells/24 h, respectively; n = 12; P < 0.05). SKF-525A was used to examine cytochrome P450 contributions to the biotransformation of NNK. SKF-525A inhibited keto reduction of NNK to NNAL by 85, 86 and 74% in cell digest, type II cells, and macrophages, respectively (means of 11 subjects, P < 0.05). Type II cell incubates treated with SKF-525A formed significantly lower amounts of total alpha-hydroxylation metabolites compared with type II cells without SKF-525A (0.0776 +/- 0.0841 versus 0.1694 +/- 0. 2148%/10(6) cells/24 h, respectively; n = 11; P < 0.05). The results of this first study examining NNK biotransformation in freshly isolated human lung cells indicate that NNK metabolism is subject to a large degree of inter-individual and intercellular variability, and suggest a role for P450s in human lung cell NNK metabolism. Both alveolar type II cells and alveolar macrophages may be potential target cells for NNK toxicity based on their alpha-carbon hydroxylation capabilities. In addition, carbonyl reduction of NNK to NNAL is SKF-525A sensitive in human lung cells.  (+info)

ICAM-1-independent adhesion of neutrophils to phorbol ester-stimulated human airway epithelial cells. (62/4148)

Intercellular adhesion molecule-1 (ICAM-1) is the only inducible adhesion receptor for neutrophils identified in bronchial epithelial cells. We stimulated human airway epithelial cells with various agonists to evaluate whether ICAM-1-independent adhesion mechanisms could be elicited. Phorbol 12-myristate 13-acetate (PMA) stimulation of cells of the alveolar cell line A549 caused a rapid, significant increase in neutrophil adhesion from 11 +/- 3 to 49 +/- 7% (SE). A significant increase from 17 +/- 4 to 39 +/- 6% was also observed for neutrophil adhesion to PMA-stimulated human bronchial epithelial cells in primary culture. Although ICAM-1 expression was upregulated by PMA at late time points, it was not affected at 10 min when neutrophil adhesion was already clearly enhanced. Antibodies to ICAM-1 had no effect on neutrophil adhesion. In contrast, antibodies to the leukocyte integrin beta-chain CD18 totally inhibited the adhesion of neutrophils to PMA-stimulated epithelial cells. These results demonstrate that PMA stimulation of human airway epithelial cells causes an increase in neutrophil adhesion that is not dependent on ICAM-1 upregulation.  (+info)

LPS-induced depolymerization of cytoskeleton and its role in TNF-alpha production by rat pneumocytes. (63/4148)

Lipopolysaccharide (LPS) polymerizes microfilaments and microtubules in macrophages and monocytes. Disrupting microfilaments or microtubules with cytochalasin D (CytoD) or colchicine can suppress LPS-induced tumor necrosis factor-alpha (TNF-alpha) gene expression and protein production from these cells. We have recently demonstrated that primary cultured rat alveolar epithelial cells can produce TNF-alpha on LPS stimulation. In the present study, we found that the LPS-induced increase in TNF-alpha mRNA level and protein production in alveolar epithelial cells was not inhibited by CytoD or colchicine (1 nM to 10 microM). In fact, LPS-induced TNF-alpha production was further enhanced by CytoD (1-10 microM) and inhibited by jasplakinolide, a polymerizing agent for microfilaments. Immunofluorescent staining and confocal microscopy showed that LPS (10 microg/ml) depolymerized microfilaments and microtubules within 15 min, which was prolonged until 24 h for microfilaments. These results suggest that the effects of LPS on the cytoskeleton and the role of the cytoskeleton in mediating TNF-alpha production in alveolar epithelial cells are opposite to those in immune cells. This disparity may reflect the different roles between nonimmune and immune cells in host defense.  (+info)

Impairment of transalveolar fluid transport and lung Na(+)-K(+)-ATPase function by hypoxia in rats. (64/4148)

We examined whether hypoxic exposure in vivo would influence transalveolar fluid transport in rats. We found a significant decrease in alveolar fluid clearance of the rats exposed to 10% oxygen for 48 h. Terbutaline did not stimulate alveolar fluid clearance, and alveolar fluid cAMP levels were lower than those determined in normoxia experiment. Hypoxia did not influence the alveolar fluid lactate dehydrogenase levels, Evans blue dye fluid-to-serum concentration ratio, or lung wet-to-dry weight ratio, indicating no significant change in the permeability of alveolar-capillary barrier. Histological examination showed no significant fluid accumulation into the interstitium and the alveolar space. Hypoxia did not reduce lung ATP content; however, we found significant decrease in Na(+)-K(+)-ATPase hydrolytic activity in lung tissue preparations and isolated alveolar type II cells. Our data indicate that hypoxic exposure in vivo impairs transalveolar fluid transport, and this impairment is related to the decrease in alveolar epithelial Na(+)-K(+)-ATPase hydrolytic activity but is not secondary to the alteration of cellular energy source.  (+info)