Glycosphingolipid-induced relocation of Lyn and Syk into detergent-resistant membranes results in mast cell activation. (1/82)

Sphingosine, sphingosine-1-phosphate, and the more complex sphingolipid ceramide exert strong immunomodulatory effects on a variety of leukocytes. However, little is known regarding such a potential of glycosphingolipids, a class of sugar derivatives of sphingosine. Here we demonstrate that galactosylsphingosine, one of the smallest representatives of this group, accumulates in the detergent-resistant membranes resulting in the relocation of the tyrosine kinases Lyn and Syk into this compartment. The result of this is an enhanced tyrosine phosphorylation and kinase activity leading to priming and activation of mast cells by conveying a weak yet significant activation of the mitogen-activated protein kinase pathway(s). In comparison to IgE/Ag triggering, galactosylsphingosine stimulates the mitogen-activated protein kinase pathway more rapidly and favors c-Jun NH2-terminal kinase 1 activation over extracellular signal-regulatory kinase 1 and 2. At the transcription factor level, this "ultratransient signaling event" results in an activation of JunD as the predominant AP-1 component. In this respect, the effects of galactosylsphingosine are clearly distinct from the signaling elicited by other sphingolipids without the sugar moiety, such as sphingosine-1-phosphate.  (+info)

Inhibition of cytokinesis by a lipid metabolite, psychosine. (2/82)

Although a number of cellular components of cytokinesis have been identified, little is known about the detailed mechanisms underlying this process. Here, we report that the lipid metabolite psychosine (galactosylsphingosine), derived from galactosylceramide, induced formation of multinuclear cells from a variety of nonadherent and adherent cells due to inhibition of cytokinesis. When psychosine was added to the human myelomonocyte cell line U937, which was the most sensitive among the cell lines tested, cleavage furrow formed either incompletely or almost completely. However, abnormal contractile movement was detected in which the cellular contents of one of the hemispheres of the contracting cell were transferred into its counterpart. Finally, the cleavage furrow disappeared and cytokinesis was reversed. Psychosine treatment also induced giant clots of actin filaments in the cells that probably consisted of small vacuoles with filamentous structures, suggesting that psychosine affected actin reorganization. These observations could account for the formation of multinuclear globoid cells in the brains of patients with globoid cell leukodystrophy, a neurological disorder characterized by the accumulation of psychosine due to galactosylceramidase deficiency.  (+info)

Sphingosine-1-phosphate and sphingosylphosphorylcholine constrict renal and mesenteric microvessels in vitro. (3/82)

Sphingolipids such as sphingosine-1-phosphate (SPP) and sphingosylphosphorylcholine (SPPC) can act both intracellularly and at G-protein-coupled receptors, some of which were cloned and designated as Edg-receptors. Sphingolipid-induced vascular effects were determined in isolated rat mesenteric and intrarenal microvessels. Additionally, sphingolipid-induced elevations in intracellular Ca(2+) concentration were measured in cultured rat aortic smooth muscle cells. SPPC and SPP (0.1-100 micromol l(-1)) caused concentration-dependent contraction of mesenteric and intrarenal microvessels (e.g. SPPC in mesenteric microvessels pEC(50) 5.63+/-0.17 and E(max) 49+/-3% of noradrenaline), with other sphingolipids being less active. The vasoconstrictor effect of SPPC in mesenteric microvessels was stereospecific (pEC(50) D-erythro-SPPC 5.69+/-0.08, L-threo-SPPC 5.31+/-0.06) and inhibited by pretreatment with pertussis toxin (E(max) from 44+/-5 to 19+/-4%), by chelation of extracellular Ca(2+) with EGTA and by nitrendipine (E(max) from 40+/-6 to 6+/-1 and 29+/-6%, respectively). Mechanical endothelial denudation or NO synthase inhibition did not alter the SPPC effects, while indomethacin reduced them (E(max) from 87+/-3 to 70+/-4%). SPP and SPPC caused transient increases in intracellular Ca(2+) concentrations in rat aortic smooth muscle cells in a pertussis toxin-sensitive manner. Our data demonstrate that SPP and SPPC cause vasoconstriction of isolated rat microvessels and increase intracellular Ca(2+) concentrations in cultured rat aortic smooth muscle cells. These effects appear to occur via receptors coupled to pertussis toxin-sensitive G-proteins. This is the first demonstration of effects of SPP and SPPC on vascular tone and suggests that sphingolipids may be an hitherto unrecognized class of endogenous regulators of vascular tone.  (+info)

Sphingosine-1-phosphate reduces rat renal and mesenteric blood flow in vivo in a pertussis toxin-sensitive manner. (4/82)

Sphingolipids such as sphingosine-1-phosphate (SPP) and sphingosylphosphorylcholine constrict isolated rat intrarenal and mesenteric microvessels in vitro. The present study investigates their effects on the cardiovascular system in vivo in anaesthetized rats. The animals were given intravenous or intrarenal arterial bolus injections of sphingolipids (0.1-100 microg kg(-1)) with subsequent measurements of mean arterial pressure, heart rate and renal and mesenteric blood flows (RBF, MBF) using a pressure transducer and electromagnetic flow probes, respectively. Intravenous injection of SPP rapidly (within 30 s), transiently and dose-dependently reduced RBF (maximally -4.0+/-0.3 ml min(-1)) and MBF (maximally -1.4+/-0.2 ml min(-1)), without affecting mean arterial pressure or heart rate. Other sphingolipids had no significant effect. Intrarenal arterial SPP administration caused greater blood flow reductions (maximally -6.4+/-0.3 ml min(-1)) than systemic administration. Upon intrarenal administration, sphingosylphos- phorylcholine also lowered RBF (maximally -2.8+/-0.6 ml min(-1)), while the other sphingolipids remained without effect. Pretreatment with pertussis toxin (PTX, 10 microg kg(-1)) 3 days before the acute experiment abolished the SPP-induced reductions of RBF and MBF. These data demonstrate, that SPP is a potent vasoconstrictor in vivo, particularly in the renal vasculature, while the other structurally related sphingolipids had little if any effects. The PTX-sensitivity strongly suggests that the effects of SPP on renal and mesenteric blood flow are mediated by receptors coupled to G(i)-type G-proteins.  (+info)

A novel plasmal conjugate to glycerol and psychosine ("glyceroplasmalopsychosine"): isolation and characterization from bovine brain white matter. (5/82)

A novel plasmal conjugate of glycosphingolipid having cationic lipid properties was isolated from the white matter of bovine brain. Linkage analysis of galactosyl residue by methylation, liquid secondary ion, and electrospray ionization mass spectrometry of intact and methylated derivatives, and by (1)H- and (13)C-NMR spectroscopy, identified the structure unambiguously as an O-acetal conjugate of plasmal to the primary hydroxyl group of glycerol and to the 6-hydroxyl group of galactosyl residue of beta-galactosyl 1-->1 sphingosine (psychosine). This novel compound is hereby termed "glyceroplasmalopsychosine"; its structure is shown below (see text).  (+info)

Lysosphingolipid receptor-mediated diuresis and natriuresis in anaesthetized rats. (6/82)

Lysosphingolipids such as sphingosine-1-phosphate (SPP) and sphingosylphosphorylcholine (SPPC) can act on specific G-protein-coupled receptors. Since SPP and SPPC cause renal vasoconstriction, we have investigated their effects on urine and electrolyte excretion in anaesthetized rats. Infusion of SPP (1 - 30 microg kg(-1) min(-1)) for up to 120 min dose-dependently but transiently (peak after 15 min, disappearance after 60 min) reduced renal blood flow without altering endogenous creatinine clearance. Nevertheless, infusion of SPP increased diuresis, natriuresis and calciuresis and, to a lesser extent, kaliuresis. These tubular lysosphingolipid effects developed more slowly (maximum after 60 - 90 min) and also abated more slowly upon lysosphingolipid washout than the renovascular effects. Infusion of SPPC, sphingosine and glucopsychosine (3 - 30 microg kg(-1) min(-1) each) caused little if any alterations in renal blood flow but also increased diuresis, natriuresis and calciuresis and, to a lesser extent, kaliuresis. Pretreatment with pertussis toxin (10 microg kg(-1) 3 days before the acute experiment) abolished the renovascular and tubular effects of 30 microg kg(-1) min(-1) SPP. These findings suggest that lysosphingolipids are a hitherto unrecognized class of endogenous modulators of renal function. SPP affects renovascular tone and tubular function via receptors coupled to G(i)-type G-proteins. SPPC, sphingosine and glucopsychosine mimic only the tubular effects of SPP, and hence may act on distinct sites.  (+info)

Identification of a molecular target of psychosine and its role in globoid cell formation. (7/82)

Globoid cell leukodystrophy (GLD) is characterized histopathologically by apoptosis of oligodendrocytes, progressive demyelination, and the existence of large, multinuclear (globoid) cells derived from perivascular microglia. The glycosphingolipid, psychosine (d-galactosyl-beta-1,1' sphingosine), accumulates to micromolar levels in GLD patients who lack the degradative enzyme galactosyl ceramidase. Here we document that an orphan G protein-coupled receptor, T cell death-associated gene 8, is a specific psychosine receptor. Treatment of cultured cells expressing this receptor with psychosine or structurally related glycosphingolipids results in the formation of globoid, multinuclear cells. Our discovery of a molecular target for psychosine suggests a mechanism for the globoid cell histology characteristic of GLD, provides a tool with which to explore the disjunction of mitosis and cytokinesis in cell cultures, and provides a platform for developing a medicinal chemistry for psychosine.  (+info)

A mutation in the saposin A domain of the sphingolipid activator protein (prosaposin) gene results in a late-onset, chronic form of globoid cell leukodystrophy in the mouse. (8/82)

Sphingolipid activator proteins (saposins A, B, C and D) are small homologous glycoproteins derived from a common precursor protein (prosaposin) encoded by a single gene. They are required for in vivo degradation of sphingolipids with short carbohydrate chains. Six cysteines and one glycosylation site are strictly conserved in all four saposins. Total deficiency of all saposins and specific deficiency of saposin B or C are known among human patients. A mouse model of total saposin deficiency closely mimics the human disease. However, no specific saposin A or D deficiency is known. We introduced an amino acid substitution (C106F) into the saposin A domain by the Cre/loxP system which eliminated one of the three conserved disulfide bonds. Saposin A(-/-) mice developed slowly progressive hind leg paralysis with clinical onset at approximately 2.5 months and survival up to 5 months. Tremors and shaking, prominent in other myelin mutants, were not obvious until the terminal stage. Pathology and analytical biochemistry were qualitatively identical to, but generally much milder than, that seen in the typical infantile globoid cell leukodystrophy (GLD) in man (Krabbe disease) and in several other mammalian species, due to genetic deficiency of lysosomal galactosylceramidase (GALC) (EC 3.2.1.46). Thus, saposin A is indispensable for in vivo degradation of galactosylceramide by GALC. It should now be recognized that, in addition to GALC deficiency, genetic saposin A deficiency could also cause chronic GLD. Genetic saposin A deficiency might be anticipated among human patients with undiagnosed late-onset chronic leukodystrophy without GALC deficiency.  (+info)