Protease-resistant and detergent-insoluble prion protein is not necessarily associated with prion infectivity. (1/43)

PrPSc, an abnormal isoform of PrPC, is the only known component of the prion, an agent causing fatal neurodegenerative disorders such as bovine spongiform encephalopathy (BSE) and Creutzfeldt-Jakob disease (CJD). It has been postulated that prion diseases propagate by the conversion of detergent-soluble and protease-sensitive PrPC molecules into protease-resistant and insoluble PrPSc molecules by a mechanism in which PrPSc serves as a template. We show here that the chemical chaperone dimethyl sulfoxide (Me2SO) can partially inhibit the aggregation of either PrPSc or that of its protease-resistant core PrP27-30. Following Me2SO removal by methanol precipitation, solubilized PrP27-30 molecules aggregated into small and amorphous structures that did not resemble the rod configuration observed when scrapie brain membranes were extracted with Sarkosyl and digested with proteinase K. Interestingly, aggregates derived from Me2SO-solubilized PrP27-30 presented less than 1% of the prion infectivity obtained when the same amount of PrP27-30 in rods was inoculated into hamsters. These results suggest that the conversion of PrPC into protease-resistant and detergent-insoluble PrP molecules is not the only crucial step in prion replication. Whether an additional requirement is the aggregation of newly formed proteinase K-resistant PrP molecules into uniquely structured aggregates remains to be established.  (+info)

Glycosylation differences between the normal and pathogenic prion protein isoforms. (2/43)

Prion protein consists of an ensemble of glycosylated variants or glycoforms. The enzymes that direct oligosaccharide processing, and hence control the glycan profile for any given glycoprotein, are often exquisitely sensitive to other events taking place within the cell in which the glycoprotein is expressed. Alterations in the populations of sugars attached to proteins can reflect changes caused, for example, by developmental processes or by disease. Here we report that normal (PrP(C)) and pathogenic (PrP(Sc)) prion proteins (PrP) from Syrian hamsters contain the same set of at least 52 bi-, tri-, and tetraantennary N-linked oligosaccharides, although the relative proportions of individual glycans differ. This conservation of structure suggests that the conversion of PrP(C) into PrP(Sc) is not confined to a subset of PrPs that contain specific sugars. Compared with PrP(C), PrP(Sc) contains decreased levels of glycans with bisecting GlcNAc residues and increased levels of tri- and tetraantennary sugars. This change is consistent with a decrease in the activity of N-acetylglucosaminyltransferase III (GnTIII) toward PrP(C) in cells where PrP(Sc) is formed and argues that, in at least some cells forming PrP(Sc), the glycosylation machinery has been perturbed. The reduction in GnTIII activity is intriguing both with respect to the pathogenesis of the prion disease and the replication pathway for prions.  (+info)

Structural studies of the scrapie prion protein by electron crystallography. (3/43)

Because the insolubility of the scrapie prion protein (PrP(Sc)) has frustrated structural studies by x-ray crystallography or NMR spectroscopy, we used electron crystallography to characterize the structure of two infectious variants of the prion protein. Isomorphous two-dimensional crystals of the N-terminally truncated PrP(Sc) (PrP 27-30) and a miniprion (PrP(Sc)106) were identified by negative stain electron microscopy. Image processing allowed the extraction of limited structural information to 7 A resolution. By comparing projection maps of PrP 27-30 and PrP(Sc)106, we visualized the 36-residue internal deletion of the miniprion and localized the N-linked sugars. The dimensions of the monomer and the locations of the deleted segment and sugars were used as constraints in the construction of models for PrP(Sc). Only models featuring parallel beta-helices as the key element could satisfy the constraints. These low-resolution projection maps and models have implications for understanding prion propagation and the pathogenesis of neurodegeneration.  (+info)

Failure to detect abnormal prion protein and scrapie-associated fibrils 6 wk after intracerebral inoculation of genetically susceptible sheep with scrapie agent. (4/43)

Detection of the scrapie-associated protease-resistant prion protein (PrPres) in sheep brains in the early phase after intracerebral inoculation of the scrapie agent has not been documented. Fourteen 4-mo-old, genetically susceptible lambs (QQ homozygous at codon 171 of the PrP gene) were obtained for this study. Twelve lambs were inoculated intracerebrally with a brain suspension from sheep naturally affected with scrapie, and 2 served as uninoculated controls. Two inoculated animals were euthanized at each of 6 times postinoculation (1 h to 6 wk), and their brains were collected for histopathological study, for detection of PrPres by the Western blot technique and an immunohistochemical (IHC) method, and for the detection of scrapie-associated fibrils (SAF) by negatively stained electron microscopy (EM). Microscopic lesions associated with introduction of the inoculum were seen in the brains of inoculated animals at all 6 times. However, both the Western blot and IHC techniques did not detect PrPres after the initial 3 d postinoculation, nor did EM detect SAF in any of the samples. From these findings, it is presumed that until host amplification has occurred, the concentration of PrPres in inoculum is insufficient for detection by currently available techniques.  (+info)

Competing intrachain interactions regulate the formation of beta-sheet fibrils in bovine PrP peptides. (5/43)

At the heart of the pathogenesis of transmissible spongiform encephalopathies (TSEs), such as BSE, scrapie, and Creutzfeldt-Jakob disease, lies a poorly understood structural rearrangement of PrP, an abundant glycoprotein of the nervous and lymphoid systems. The normal form (PrP(C)), rich in alpha-helix, converts into an aberrant beta-sheet-dominated form (PrP(Sc)), which seems to be at the center of the pathotoxic symptoms observed in TSEs. To understand this process better at a molecular level, we have studied the interactions between different peptides derived from bovine PrP and their structural significance. We show that two unstructured peptides derived from the central region of bovine PrP, residues 115-133 and 140-152, respectively, interact stoichiometrically under physiological conditions to generate beta-sheet-dominated fibrils. However, when both peptides are incubated in the presence of a third peptide derived from an adjoining alpha-helical region (residues 153-169), the formation of beta-sheet-rich fibrils is abolished. These data indicate that native PrP(C) helix 1 might inhibit the strong intrinsic beta-sheet-forming propensity of sequences immediately N-terminal to the globular core of PrP(C), by keeping in place intrachain interactions that would prevent these amyloidogenic regions from triggering aggregation. Moreover, these results indicate new ways in which PrP(Sc) formation could be prevented.  (+info)

The interplay of glycosylation and disulfide formation influences fibrillization in a prion protein fragment. (6/43)

It is now accepted that the structural transition from cellular prion protein (PrPC) to proteinase K-resistant prion protein scrapie (PrPSc) is the major event leading to transmissible spongiform encephalopathies. Although the mechanism of this transition remains elusive, glycosylation has been proposed to impede the PrPC to PrPSc conversion. To address the role of glycosylation, we have prepared glycosylated and unglycosylated peptides derived from the 175-195 fragment of the human prion protein. Comparison of the structure, aggregation kinetics, fibril formation capabilities, and redox susceptibility of Cys-179 has shown that the N-linked glycan (at Asn-181) significantly reduces the rate of fibrillization by promoting intermolecular disulfide formation via Cys-179. Further-more, the aggressive fibrillization of a C179S mutant of this fragment highlights the significant role of disulfide stability in retarding the rate of fibril formation. The implications of these studies are discussed in the context of fibril formation in the intact prion protein.  (+info)

Identification of novel proteinase K-resistant C-terminal fragments of PrP in Creutzfeldt-Jakob disease. (7/43)

The central event in the pathogenesis of prion diseases, a group of fatal, transmissible neurodegenerative disorders including Creutzfeldt-Jakob disease (CJD) in humans, is the conversion of the normal or cellular prion protein (PrPC) into the abnormal or scrapie isoform (PrPSc). The basis of the PrPC to PrPSc conversion is thought to involve the diminution of alpha-helical domains accompanied by the increase of beta structures within the PrP molecule. Consequently, treatment of PrPSc with proteinase K (PK) generates a large PK-resistant C-terminal core fragment termed PrP27-30 that in human prion diseases has a gel mobility of approximately 19-21 kDa for the unglycosylated form, and a ragged N terminus between residues 78 and 103. PrP27-30 is considered the pathogenic and infectious core of PrPSc. Here we report the identification of two novel PK-resistant, but much smaller C-terminal fragments of PrP (PrP-CTF 12/13) in brains of subjects with sporadic CJD. PrP-CTF 12/13, like PrP27-30, derive from both glycosylated as well as unglycosylated forms. The unglycosylated PrPCTF 12/13 migrate at 12 and 13 kDa and have the N terminus at residues 162/167 and 154/156, respectively. Therefore, PrP-CTF12/13 are 64-76 amino acids N-terminally shorter than PrP27-30 and are about half of the size of PrP27-30. PrP-CTF12/13 are likely to originate from a subpopulation of PrPSc distinct from that which generates PrP27-30. The finding of PrP-CTF12/13 in CJD brains widens the heterogeneity of the PK-resistant PrP fragments associated with prion diseases and may provide useful insights toward the understanding of the PrPSc structure and its formation.  (+info)

Transmission of transmissible mink encephalopathy to raccoons (Procyon lotor) by intracerebral inoculation. (8/43)

To determine the transmissibility of transmissible mink encephalopathy (TME) agent to raccoons and to provide information about clinical course, lesions, and suitability of currently used diagnostic procedures for detection of transmissible spongiform encephalopathies (TSEs) in raccoons, 4 raccoon kits were inoculated intracerebrally with a brain suspension from mink experimentally infected with TME. One uninoculated raccoon kit served as a control. All 4 animals in the TME-inoculated group showed clinical signs of neurologic disorder and were euthanized between 21 and 23 weeks postinoculation (PI). Necropsy examinations revealed no gross lesions. Spongiform encephalopathy was observed by light microscopy, and the presence of protease-resistant prion protein (PrPres) was detected by immunohistochemistry and Western blot techniques. Scrapie-associated fibrils were observed by negative-stain electron microscopy in the brains of 3 of the 4 inoculated raccoons. These findings confirm that TME is experimentally transmissible to raccoons and that diagnostic techniques currently used for TSE in livestock detect prion protein in raccoon tissue. According to previously published data, the incubation period of sheep scrapie in raccoons is 2 years, whereas chronic wasting disease (CWD) had not shown transmission after 3 years of observation. Because incubation periods for the 3 US TSEs (scrapie, TME, and CWD) in raccoons appear to be markedly different, it may be possible to use raccoons for differentiating unknown TSE agents. Retrospective genotyping of raccoons using frozen spleens showed that the raccoon PrP gene is identical to the mink gene at codons 179 and 224. Further studies, such as the incubation periods of bovine spongiform encephalopathy and other isolates of scrapie, CWD, and TME in raccoons, are needed before the model can be further characterized for differentiation of TSE agents.  (+info)