Differential expression of the mRNA for the vanilloid receptor subtype 1 in cells of the adult rat dorsal root and nodose ganglia and its downregulation by axotomy. (33/24774)

Sensitivity to the pungent vanilloid, capsaicin, defines a subpopulation of primary sensory neurons that are mainly polymodal nociceptors. The recently cloned vanilloid receptor subtype 1 (VR1) is activated by capsaicin and noxious heat. Using combined in situ hybridization and histochemical methods, we have characterized in sensory ganglia the expression of VR1 mRNA. We show that this receptor is almost exclusively expressed by neurofilament-negative small- and medium-sized dorsal root ganglion cells. Within this population, VR1 mRNA is detected at widely varying levels in both the NGF receptor (trkA)-positive, peptide-producing cells that elicit neurogenic inflammation and the functionally less characterized glial cell line-derived neurotrophic factor-responsive cells that bind lectin Griffonia simplicifolia isolectin B4 (IB4). Cells without detectable levels of VR1 mRNA are found in both classes. A subpopulation of the IB4-binding cells that produce somatostatin has relatively low levels of VR1 mRNA. A previously uncharacterized population of very small cells that express the receptor tyrosine kinase (RET) and that do not label for trkA or IB4-binding has the highest relative levels of VR1 mRNA. The majority of small visceral sensory neurons of the nodose ganglion also express VR1 mRNA, in conjunction with the BDNF receptor trkB but not trkA. Axotomy results in the downregulation of VR1 mRNA in dorsal root ganglion cells. Our data emphasize the heterogeneity of VR1 mRNA expression by subclasses of small sensory neurons, and this may result in their differential sensitivity to chemical and noxious heat stimuli. Our results also indicate that peripherally derived trophic factors may regulate levels of VR1 mRNA.  (+info)

Differential regulation of vascular endothelial growth factor and its receptor fms-like-tyrosine kinase is mediated by nitric oxide in rat renal mesangial cells. (34/24774)

Under conditions associated with local and systemic inflammation, mesangial cells and invading immune cells are likely to be responsible for the release of large amounts of nitric oxide (NO) in the glomerulus. To further define the mechanisms of NO action in the glomerulus, we attempted to identify genes which are regulated by NO in rat glomerular mesangial cells. We identified vascular endothelial growth factor (VEGF) and its receptor fms-like tyrosine kinase (FLT-1) to be under the regulatory control of exogenously applied NO in these cells. Using S-nitroso-glutathione (GSNO) as an NO-donating agent, VEGF expression was strongly induced, whereas expression of its FLT-1 receptor simultaneously decreased. Expressional regulation of VEGF and FLT-1 mRNA was transient and occurred rapidly within 1-3 h after GSNO treatment. Expression of a second VEGF-specific receptor, fetal liver kinase-1 (FLK-1/KDR), could not be detected. The inflammatory cytokine interleukin-1beta mediated a moderate increase in VEGF expression after 24 h and had no influence on FLT-1 expression. In contrast, platelet-derived growth factor-BB and basic fibroblast growth factor had no effect on VEGF expression, but strongly induced FLT-1 mRNA levels. Obviously, there is a differential regulation of VEGF and its receptor FLT-1 by NO, cytokines and growth factors in rat mesangial cells.  (+info)

Structural basis of Rab effector specificity: crystal structure of the small G protein Rab3A complexed with the effector domain of rabphilin-3A. (35/24774)

The small G protein Rab3A plays an important role in the regulation of neurotransmitter release. The crystal structure of activated Rab3A/GTP/Mg2+ bound to the effector domain of rabphilin-3A was solved to 2.6 A resolution. Rabphilin-3A contacts Rab3A in two distinct areas. The first interface involves the Rab3A switch I and switch II regions, which are sensitive to the nucleotide-binding state of Rab3A. The second interface consists of a deep pocket in Rab3A that interacts with a SGAWFF structural element of rabphilin-3A. Sequence and structure analysis, and biochemical data suggest that this pocket, or Rab complementarity-determining region (RabCDR), establishes a specific interaction between each Rab protein and its effectors. RabCDRs could be major determinants of effector specificity during vesicle trafficking and fusion.  (+info)

Involvement of polyomavirus enhancer activator 3 in the regulation of expression of gamma-glutamyl transpeptidase messenger ribonucleic acid-IV in the rat epididymis. (36/24774)

Gamma-glutamyl transpeptidase (GGT) mRNA-IV and polyomavirus enhancer activator 3 (PEA3) mRNA are highly expressed in the initial segment of the rat epididymis, and both are regulated by testicular factors. PEA3 protein in rat initial segment nuclear extracts has been shown to bind to a PEA3/Ets binding motif, which is derived from the partially characterized GGT mRNA-IV promoter region. This suggests that PEA3 may be involved in regulating transcription from the rat GGT mRNA-IV gene promoter in the initial segment. Using DNA oligonucleotide primers and DNA sequencing analysis, an approximately 1500-basepair (bp) DNA sequence at the 5' region of the promoter was obtained. Using transient transfection, PEA3 activated transcription of the rat GGT mRNA-IV promoter only in cultured epididymal cells from the rat initial segment, but not in Cos-1 or NRK-52E cells. Promoter deletion analysis indicated that a PEA3/Ets binding motif between nucleotides -22 and -17 is the functional site for PEA3 to activate transcription of GGT promoter IV and that an adjacent Sp1 binding motif is also required to maintain promoter IV activity in epididymal cells. Transcriptional activation of promoter IV was shown to be epididymal cell-specific and PEA3-specific. In addition, PEA3 may act as a weak repressor for transcription of promoter IV, probably using a PEA3/Ets binding motif(s) distal to the transcription start site. A model of how PEA3 is involved in the regulation of transcription of GGT promoter IV in epididymal cells is proposed.  (+info)

Granulocyte-macrophage colony-stimulating factor-activated signaling pathways in human neutrophils. Involvement of Jak2 in the stimulation of phosphatidylinositol 3-kinase. (37/24774)

Granulocyte-macrophage colony-stimulating factor (GM-CSF) regulates many of the biological activities of human neutrophils. The signaling pathways via which these effects are mediated are not fully understood. We have shown previously that GM-CSF treatment of human neutrophils activates the Janus kinase/signal transducers and activators of transcription (Jak/STAT) pathway and, more specifically, Jak2, STAT3, and STAT5B in neutrophils. GM-CSF also stimulates the activity of the phosphatidylinositol 3-kinase (PI3-kinase) in a tyrosine kinase-dependent manner. Here we report that pretreating the cells with a Jak2 inhibitor (AG-490) abolishes tyrosine phosphorylation of the p85 subunit of PI3-kinase induced by GM-CSF. Furthermore, p85 was found to associate with Jak2, but not with Lyn, in stimulated cells in situ and with its autophosphorylated form in vitro; however, Jak2 did not bind to either of the two Src homology 2 (SH2) domains of the p85 subunit of PI3-kinase. Although STAT5B bound to the carboxyl-terminal SH2 domain of p85, it was absent from the complex containing PI3-kinase and Jak2. These results suggest that stimulation of the activity of PI3-kinase induced by GM-CSF is mediated by Jak2 and that the association between Jak2 and p85 depends on an adaptor protein yet to be identified.  (+info)

Fibroblast growth factor-8 expression is regulated by intronic engrailed and Pbx1-binding sites. (38/24774)

Fibroblast growth factor-8 (FGF8) plays a critical role in vertebrate development and is expressed normally in temporally and spatially restricted regions of the vertebrate embryo. We now report on the identification of regions of Fgf8 important for its transcriptional regulation in murine ES cell-derived embryoid bodies. Stable transfection of ES cells, using a human growth hormone reporter gene, was employed to identify regions of the Fgf8 gene with promoter/enhancer activity. A 2-kilobase 5' region of Fgf8 was shown to contain promoter activity. A 0.8-kilobase fragment derived from the large intron of Fgf8 was found to enhance human growth hormone expressed from the Fgf8 promoter 3-4-fold in an orientation dependent manner. The intronic fragment contains DNA-binding sites for the AP2, Pbx1, and Engrailed transcription factors. Gel shift and Western blot experiments documented the presence of these transcription factors in nuclear extracts from ES cell embryoid bodies. In vitro mutagenesis of the Engrailed or Pbx1 site demonstrated that these sites modulate the activity of the intronic fragment. In addition, in vitro mutagenesis of both Engrailed and Pbx1 sites indicated that other unidentified sites are responsible for the transcriptional enhancement observed with the intronic fragment.  (+info)

Immunohistochemical analysis of c-yes and c-erbB-2 oncogene products and p53 tumor suppressor protein in canine mammary tumors. (39/24774)

In order to evaluate the involvement of c-yes and c-erbB-2 oncogene products, and p53 tumor suppressor protein in canine mammary neoplastic lesions, sections of archived paraffin-embedded samples of 79 mammary tumors were analyzed immunohistochemically using antibodies against human c-yes p62 and c-erbB-2 products and p53. These 79 tumors were divided into 2 groups: 32 benign (2 adenosis, 7 simple adenomas, 14 complex adenomas, and 9 benign mixed mammary tumors) and 47 malignant tumors (26 simple adenocarcinomas, 7 complex adenocarcinomas, 5 solid carcinomas, 2 sclerosing carcinomas, 6 malignant mixed mammary tumors, and 1 malignant myoepithelioma). As a result of immunostaining, 40.6% (13/32) of the benign tumors and 21.3% (10/47) of the malignant tumors expressed the c-Yes oncogene product, ErbB-2 expression was detected in 50% (16/32) of the benign tumors and in 19.1% (9/47) of the malignant tumors. P53 expression was detected in 16% (4/25) of the benign tumors and in 30.6% (11/36) of the malignant tumors. Co-expression of c-Yes and ErbB-2, ErbB-2 and p53, and all 3 products was detected in 6, 1 and 7 tumors, respectively.  (+info)

A photodynamic pathway to apoptosis and necrosis induced by dimethyl tetrahydroxyhelianthrone and hypericin in leukaemic cells: possible relevance to photodynamic therapy. (40/24774)

The mechanism of cell death induction by dimethyl tetrahydroxyhelianthrone (DTHe), a new second-generation photodynamic sensitizer, is analysed in human leukaemic cell lines in comparison with the structurally related hypericin. DTHe has a broad range of light spectrum absorption that enables effective utilization of polychromatic light. Photosensitization of HL-60 cells with low doses of DTHe (0.65 microM DTHe and 7.2 J cm(-2) light energy) induced rapid apoptosis of > or =90% of the cells. At doses > or =2 microM, dying cells assumed morphological necrosis with perinucleolar condensation of chromatin in HL-60 and K-562 cell lines. Although nuclear fragmentation that is characteristic to apoptosis was prevented, DNA digestion to oligonucleosomes proceeded unhindered. Such incomplete apoptosis was more prevalent with the related analogue hypericin throughout most doses of photosensitization. Despite hypericin being a stronger photosensitizer, DTHe exhibited advantageous phototoxic properties to tumour cells, initiating apoptosis at concentrations about threefold lower than hypericin. Photosensitization of the cells induced dissociation of the nuclear envelope, releasing lamins into the cytosol. DTHe also differed from hypericin in effects exerted on the nuclear lamina, causing release of an 86-kDa lamin protein into the cytosol that was unique to DTHe. Within the nucleus, nuclear envelope lamin B underwent covalent polymerization, which did not affect apoptotic nuclear fragmentation at low doses of DTHe. At higher doses, polymerization may have been extensive enough to prevent nuclear collapse. Hut-78, CD4+ cells were resistant to the photodynamically activated apoptotic pathway. Beyond the tolerated levels of photodynamic damage, these cells died exclusively via necrosis. Hut-78 cells overexpress Bcl-X(L) as well as a truncated Bcl-X(L)tr isoform that could contribute to the observed resistance to apoptosis.  (+info)