Volume expansion stimulates p72(syk) and p56(lyn) in skate erythrocytes. (57/14131)

Hypotonic volume expansion of skate erythrocytes rapidly stimulates the tyrosine phosphorylation of band 3, the membrane protein thought to mediate the osmotically sensitive taurine efflux. Skate erythrocytes possess numerous tyrosine kinases including p59fyn, p56lyn, pp60(src), and p72(syk), demonstrated by immune complex assays measuring autocatalytic kinase activity. Inclusion of the cytoplasmic domain of band 3 in this assay showed that only Syk and Lyn can directly phosphorylate the cytoplasmic domain of band 3. Upon cell volume expansion, Syk activity was increased as assessed by three different assays (immune complex assay measuring autophosphorylation, assay of the level of phosphotyrosine of the immunoprecipitated kinase, and assay of level of 32P in the kinase immunoprecipitated from cells prelabeled with 32PO4 and then volume-expanded). The tyrosine kinase Lyn was also stimulated by volume expansion, most notably when analyzed by the latter two methods. Volume expansion stimulated a large increase in the ability of Syk to phosphorylate band 3 at times that coincide with the stimulation of taurine flux. The stilbene piceatannol inhibited Syk preferentially over Lyn and other tyrosine kinases and inhibited volume-stimulated taurine efflux in a concentration-dependent manner similar to that for the inhibition of Syk. Two major phosphorylation peaks were detected in tryptic digests of cdb3 separated by reverse phase HPLC. Edman degradation demonstrated a phosphotyrosine in a YXXL motif. In conclusion, p72(syk) appears to be a strong candidate as a pivotal signal-transducing step in the volume-activated taurine efflux in skate red cells. The level of band-3 phosphorylation may be regulated, in addition, by a protein-tyrosine phosphatase of the 1B variety.  (+info)

Cell shrinkage regulates Src kinases and induces tyrosine phosphorylation of cortactin, independent of the osmotic regulation of Na+/H+ exchangers. (58/14131)

The signaling pathways by which cell volume regulates ion transporters, e.g. Na+/H+ exchangers (NHEs), and affects cytoskeletal organization are poorly understood. We have previously shown that shrinkage induces tyrosine phosphorylation in CHO cells, predominantly in an 85-kDa band. To identify volume-sensitive kinases and their substrates, we investigated the effect of hypertonicity on members of the Src kinase family. Hyperosmolarity stimulated Fyn and inhibited Src. Fyn activation was also observed in nystatin-permeabilized cells, where shrinkage cannot induce intracellular alkalinization. In contrast, osmotic inhibition of Src was prevented by permeabilization or by inhibiting NHE-1. PP1, a selective Src family inhibitor, strongly reduced the hypertonicity-induced tyrosine phosphorylation. We identified one of the major targets of the osmotic stress-elicited phosphorylation as cortactin, an 85-kDa actin-binding protein and well known Src family substrate. Cortactin phosphorylation was triggered by shrinkage and not by changes in osmolarity or pHi and was abrogated by PP1. Hyperosmotic cortactin phosphorylation was reduced in Fyn-deficient fibroblasts but remained intact in Src-deficient fibroblasts. To address the potential role of the Src family in the osmotic regulation of NHEs, we used PP1. The drug affected neither the hyperosmotic stimulation of NHE-1 nor the inhibition of NHE-3. Thus, members of the Src family are volume-sensitive enzymes that may participate in the shrinkage-related reorganization of the cytoskeleton but are probably not responsible for the osmotic regulation of NHE.  (+info)

c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function. (59/14131)

Accumulating evidence indicates that interactions between the epidermal growth factor receptor (EGFR) and the nonreceptor tyrosine kinase c-Src may contribute to an aggressive phenotype in multiple human tumors. Previous work from our laboratory demonstrated that murine fibroblasts which overexpress both these tyrosine kinases display synergistic increases in DNA synthesis, soft agar growth, and tumor formation in nude mice, and increased phosphorylation of the receptor substrates Shc and phospholipase gamma as compared with single overexpressors. These parameters correlated with the ability of c-Src and EGFR to form an EGF-dependent heterocomplex in vivo. Here we provide evidence that association between c-Src and EGFR can occur directly, as shown by receptor overlay experiments, and that it results in the appearance of two novel tyrosine phosphorylations on the receptor that are seen both in vitro and in vivo following EGF stimulation. Edman degradation analyses and co-migration of synthetic peptides with EGFR-derived tryptic phosphopeptides identify these sites as Tyr845 and Tyr1101. Tyr1101 lies within the carboxyl-terminal region of the EGFR among sites of receptor autophosphorylation, while Tyr845 resides in the catalytic domain, in a position analogous to Tyr416 of c-Src. Phosphorylation of Tyr416 and homologous residues in other tyrosine kinase receptors has been shown to be required for or to increase catalytic activity, suggesting that c-Src can influence EGFR activity by mediating phosphorylation of Tyr845. Indeed, EGF-induced phosphorylation of Tyr845 was increased in MDA468 human breast cancer cells engineered to overexpress c-Src as compared with parental MDA 468 cells. Furthermore, transient expression of a Y845F variant EGFR in murine fibroblasts resulted in an ablation of EGF-induced DNA synthesis to nonstimulated levels. Together, these data support the hypothesis that c-Src-mediated phosphorylation of EGFR Tyr845 is involved in regulation of receptor function, as well as in tumor progression.  (+info)

Autosomal SCID caused by a point mutation in the N-terminus of Jak3: mapping of the Jak3-receptor interaction domain. (60/14131)

Signaling through the hematopoietic receptors requires activation of receptor-associated Janus (Jak) kinases. For example, Jak1 and Jak3 bind specifically to the IL-2 receptor beta (IL-2Rbeta) and common gamma (gammac) chains, respectively, and initiate biochemical signals critical in controlling immune responses. The region of Jak responsible for receptor interactions, however, is not well characterized. Here we describe a naturally occurring Jak3 mutation from a patient with autosomal severe combined immunodeficiency (SCID), where a single amino acid substitution, Y100C, in Janus homology domain 7 (JH7) prevents kinase-receptor interaction. This mutation also results in a loss of IL-2-induced signaling in a B-cell line derived from this patient. Using mutational analysis we have identified a region of Jak3, including portions of JH6 and JH7, that is sufficient for kinase-receptor contact and show that this segment interacts with the proline-rich Box1 region of the receptor. Furthermore, a Jak3-Jak1 chimera containing only the JH6 and JH7 domains of Jak3 interacts with gammac and can reconstitute IL-2-dependent responses, including receptor phosphorylation and activation of signal transducer and activator of transcription (STAT) 5b. Our results suggest that the N-terminus of Jak kinases is critical for receptor binding, and is therefore likely to determine specificity of Jak kinase-receptor interactions.  (+info)

The Rho-family GTP exchange factor Vav is a critical transducer of T cell receptor signals to the calcium, ERK, and NF-kappaB pathways. (61/14131)

Vav is a GTP/GDP exchange factor (GEF) for members of the Rho-family of GTPases that is rapidly tyrosine-phosphorylated after engagement of the T cell receptor (TCR), suggesting that it may transduce signals from the receptor. T cells from mice made Vav-deficient by gene targeting (Vav-/-) fail to proliferate in response to TCR stimulation because they fail to secrete IL-2. We now show that this is due at least in part to the failure to initiate IL-2 gene transcription. Furthermore, we analyze TCR-proximal signaling pathways in Vav-/- T cells and show that despite normal activation of the Lck and ZAP-70 tyrosine kinases, the mutant cells have specific defects in TCR-induced intracellular calcium fluxes, in the activation of extracellular signal-regulated mitogen-activated protein kinases and in the activation of the NF-kappaB transcription factor. Finally, we show that the greatly reduced TCR-induced calcium flux of Vav-deficient T cells is an important cause of their proliferative defect, because restoration of the calcium flux with a calcium ionophore reverses the phenotype.  (+info)

Hyperglycemia inhibits insulin activation of Akt/protein kinase B but not phosphatidylinositol 3-kinase in rat skeletal muscle. (62/14131)

Sustained hyperglycemia impairs insulin-stimulated glucose utilization in the skeletal muscle of both humans and experimental animals--a phenomenon referred to clinically as glucose toxicity. To study how this occurs, a model was developed in which hyperglycemia produces insulin resistance in vitro. Rat extensor digitorum longus muscles were preincubated for 4 h in Krebs-Henseleit solution containing glucose or glucose + insulin at various concentrations, after which insulin action was studied. Preincubation with 25 mmol/l glucose + insulin (10 mU/ml) led to a 70% decrease in the ability of insulin (10 mU/ml) to stimulate glucose incorporation into glycogen and a 30% decrease in 2-deoxyglucose (2-DG) uptake, compared with muscles incubated with 0 mmol/l glucose. Glucose incorporation into lipid and its oxidation to CO2 were marginally diminished, if at all. The alterations of glycogen synthesis and 2-DG uptake were first evident after 1 h and were maximal after 2 h of preincubation; they were not observed in muscles preincubated with 25 mmol/l glucose + insulin for 5 min. Preincubation for 4 h with 25 mmol/l glucose in the absence of insulin produced a similar although somewhat smaller decrease in insulin-stimulated glycogen synthesis; however, it did not alter 2-DG uptake, glucose oxidation to CO2, or incorporation into lipids. Studies of insulin signaling in the latter muscles revealed that activation of Akt/protein kinase B (PKB) was diminished by 60%, compared with that of muscles preincubated in a glucose-free medium; whereas activation of phosphatidylinositol (PI) 3-kinase, an upstream regulator of Akt/PKB in the insulin-signaling cascade, and of mitogen-activated protein (MAP) kinase, a parallel signal, was unaffected. Immunoblots demonstrated that this was not due to a change in Akt/PKB abundance. The results indicate that hyperglycemia-induced insulin resistance can be studied in rat skeletal muscle in vitro. They suggest that impairment of insulin action in these muscles is related to inhibition of Akt/PKB by events that do not affect PI 3-kinase.  (+info)

Selective activation and functional significance of p38alpha mitogen-activated protein kinase in lipopolysaccharide-stimulated neutrophils. (63/14131)

Activation of leukocytes by proinflammatory stimuli selectively initiates intracellular signal transduction via sequential phosphorylation of kinases. Lipopolysaccharide (LPS) stimulation of human neutrophils is known to result in activation of p38 mitogen-activated protein kinase (MAPk); however, the upstream activator(s) of p38 MAPk is unknown, and consequences of p38 MAPk activation remain largely undefined. We investigated the MAPk kinase (MKK) that activates p38 MAPk in response to LPS, the p38 MAPk isoforms that are activated as part of this pathway, and the functional responses affected by p38 MAPk activation. Although MKK3, MKK4, and MKK6 all activated p38 MAPk in experimental models, only MKK3 was found to activate recombinant p38 MAPk in LPS-treated neutrophils. Of p38 MAPk isoforms studied, only p38alpha and p38delta were detected in neutrophils. LPS stimulation selectively activated p38alpha. Specific inhibitors of p38alpha MAPk blocked LPS-induced adhesion, nuclear factor-kappa B (NF-kappaB) activation, and synthesis of tumor necrosis factor-alpha (TNF-alpha). Inhibition of p38alpha MAPk resulted in a transient decrease in TNF-alpha mRNA accumulation but persistent loss of TNF-alpha synthesis. These findings support a pathway by which LPS stimulation of neutrophils results in activation of MKK3, which in turn activates p38alpha MAPk, ultimately regulating adhesion, NF-kappaB activation, enhanced gene expression of TNF-alpha, and regulation of TNF-alpha synthesis.  (+info)

Overexpression of insulin-like growth factor-1 (IGF-I) receptor and the invasiveness of cultured keloid fibroblasts. (64/14131)

Keloid is a dermal fibroproliferative tissue of unknown etiology. Protein tyrosine kinases (PTKs) play an important role in the regulation of cell growth and differentiation. Activation of PTK cascades in keloid fibroblasts is thought to be closely linked to abnormal cell proliferation and migration. We determined the expression profile of PTK genes in normal skin and keloid fibroblasts using the homology cloning method with a degenerated primer. Eight PTK genes were expressed among a total of 46 receptor-type clones. The most abundant type of PTK receptors was the platelet-derived growth factor receptor in both fibroblasts. However, insulin-like growth factor-I receptor (IGF-IR) was overexpressed only in keloid-derived fibroblasts (9 of 24). Immunohistochemical analysis confirmed the high expression of IGF-IR in keloid fibroblasts, but not in normal fibroblasts. To examine the functional properties of the IGF-I/IGF-IR pathway, we investigated cell proliferation and invasion activities of both types of fibroblasts. The mitogenic effect of IGF-I on both fibroblasts was very weak compared with serum stimulation. In contrast, the invasive activity of keloid fibroblasts was markedly increased in the presence of IGF-I, and inhibited by a neutralizing antibody against IGF-IR. Our results indicate the involvement of activated IGF-I/IGF-IR in the pathogenesis of keloid by enhancing the invasive activity of fibroblasts.  (+info)