Identification of novel serine/threonine protein phosphatases in Trypanosoma cruzi: a potential role in control of cytokinesis and morphology. (73/1591)

We cloned two novel Trypanosoma cruzi proteins by using degenerate oligonucleotide primers prepared against conserved domains in mammalian serine/threonine protein phosphatases 1, 2A, and 2B. The isolated genes encoded proteins of 323 and 330 amino acids, respectively, that were more homologous to the catalytic subunit of human protein phosphatase 1 than to those of human protein phosphatase 2A or 2B. The proteins encoded by these genes have been tentatively designated TcPP1alpha and TcPP1beta. Northern blot analysis revealed the presence of a major 2.3-kb mRNA transcript hybridizing to each gene in both the epimastigote and metacyclic trypomastigote developmental stages. Southern blot analysis suggests that each protein phosphatase 1 gene is present as a single copy in the T. cruzi genome. The complete coding region for TcPP1beta was expressed in Escherichia coli by using a vector, pTACTAC, with the trp-lac hybrid promoter. The recombinant protein from the TcPP1beta construct displayed phosphatase activity toward phosphorylase a, and this activity was preferentially inhibited by calyculin A (50% inhibitory concentration [IC(50)], approximately 2 nM) over okadaic acid (IC(50), approximately 100 nM). Calyculin A, but not okadaic acid, had profound effects on the in vitro replication and morphology of T. cruzi epimastigotes. Low concentrations of calyculin A (1 to 10 nM) caused growth arrest. Electron microscopic studies of the calyculin A-treated epimastigotes revealed that the organisms underwent duplication of organelles, including the flagellum, kinetoplast, and nucleus, but were incapable of completing cell division. At concentrations higher than 10 nM, or upon prolonged incubation at lower concentrations, the epimastigotes lost their characteristic elongated spindle shape and had a more rounded morphology. Okadaic acid at concentrations up to 1 microM did not result in growth arrest or morphological alterations to T. cruzi epimastigotes. Calyculin A, but not okadaic acid, was also a potent inhibitor of the dephosphorylation of (32)P-labeled phosphorylase a by T. cruzi epimastigotes and metacyclic trypomastigote extracts. These inhibitor studies suggest that in T. cruzi, type 1 protein phosphatases are important for the completion of cell division and for the maintenance of cell shape.  (+info)

Somatic mutations and genetic polymorphisms of the PPP1R3 gene in patients with several types of cancers. (74/1591)

Recently, we found nonsense and missense mutations of the PPP1R3 (protein phosphatase 1, regulatory subunit 3) gene in diverse human cancer cell lines and primary lung carcinomas, indicating that PPP1R3 functions as a tumor suppressor in human carcinogenesis. In this study, to assess the prevalence of PPP1R3 mutations in human primary cancers and the genetic diversity of the PPP1R3 gene in the human population, somatic mutations and genetic polymorphisms in the PPP1R3 gene were examined in 137 pairs of cancerous and non-cancerous tissues of patients with cancers of colon, ovary, and liver. Five somatic mutations including two missense mutations were detected in three cancerous tissues consisting of two colorectal carcinomas and one ovarian carcinoma. Five novel single nucleotide polymorphisms (SNPs) associated with the substitution of amino acids were also identified in cancer patients, in addition to five known nonsynonymous SNPs, including three previously reported ones as having an impact on the susceptibility to insulin resistant disorders. Differences in the activities and properties of multiple PPP1R3 proteins, which are produced in human cells due to variable somatic mutations and genetic polymorphisms in the PPP1R3 gene, can be involved in human carcinogenesis and susceptibility to diseases.  (+info)

Study of the subunit interactions in myosin phosphatase by surface plasmon resonance. (75/1591)

The interactions of the catalytic subunit of type 1 protein phosphatase (PP1c) and the N-terminal half (residues 1-511) of myosin phosphatase target subunit 1 (MYPT1) were studied. Biotinylated MYPT1 derivatives were immobilized on streptavidin-biosensor chips, and binding parameters with PP1c were determined by surface plasmon resonance (SPR). The affinity of binding of PP1c was: MYPT11-296 > MYPT11-38 > MYPT123-38. No binding was detected with MYPT11-34, suggesting a critical role for residues 35-38, i.e. the PP1c binding motif. Binding of residues 1-22 was inferred from: a higher affinity binding to PP1c for MYPT11-38 compared to MYPT123-38, as deduced from SPR kinetic data and ligand competition assays; and an activation of the myosin light chain phosphatase activity of PP1c by MYPT11-38, but not by MYPT123-38. Residues 40-296 (ankyrin repeats) in MYPT11-296 inhibited the phosphorylase phosphatase activity of PP1c (IC50 = 0.2 nM), whereas MYPT11-38, MYPT123-38 or MYPT11-34 were without effect. MYPT140-511, which alone did not bind to PP1c, showed facilitated binding to the complexes of PP1c-MYPT11-38 and PP1c-MYPT123-38. The inhibitory effect of MYPT140-511 on the phosphorylase phosphatase activity of PP1c also was increased in the presence of MYPT11-38. The binding of MYPT1304-511 to complexes of PP1c and MYPT11-38, or MYPT11-296, was detected by SPR. These results suggest that within the N-terminal half of MYPT1 there are at least four binding sites for PP1c. The essential interaction is with the PP1c-binding motif and the other interactions are facilitated in an ordered and cooperative manner.  (+info)

Protein phosphatase 1beta is required for the maintenance of muscle attachments. (76/1591)

Type 1 serine/threonine protein phosphatases (PP1) are important regulators of many cellular and developmental processes, including glycogen metabolism, muscle contraction, and the cell cycle [1] [2] [3] [4] [5]. Drosophila and humans both have multiple genes encoding PP1 isoforms [3] [6] [7]; each has one beta and several alpha isoform genes (alpha(1), alpha(2), alpha(3) in flies, alpha and gamma in humans; mammalian PP1beta is also known as PP1delta). The alpha/beta subtype differences are highly conserved between flies and mammals [6]. Though all these proteins are >85% identical to each other and have indistinguishable activities in vitro, we show here that the Drosophila beta isoform has a distinct biological role. We show that PP1beta9C corresponds to flapwing (flw), previously identified mutants of which are viable but flightless because of defects in indirect flight muscles (IFMs) [8]. We have isolated a new, semi-lethal flw allele that shows a range of defects, especially in muscles, which break away from their attachment sites and degenerate.  (+info)

Structure-based thermodynamic analysis of the dissociation of protein phosphatase-1 catalytic subunit and microcystin-LR docked complexes. (77/1591)

The relationship between the structure of a free ligand in solution and the structure of its bound form in a complex is of great importance to the understanding of the energetics and mechanism of molecular recognition and complex formation. In this study, we use a structure-based thermodynamic approach to study the dissociation of the complex between the toxin microcystin-LR (MLR) and the catalytic domain of protein phosphatase-1 (PP-1c) for which the crystal structure of the complex is known. We have calculated the thermodynamic parameters (enthalpy, entropy, heat capacity, and free energy) for the dissociation of the complex from its X-ray structure and found the calculated dissociation constant (4.0 x 10(-11)) to be in excellent agreement with the reported inhibitory constant (3.9 x 10(-11)). We have also calculated the thermodynamic parameters for the dissociation of 47 PP-1c:MLR complexes generated by docking an ensemble of NMR solution structures of MLR onto the crystal structure of PP-1c. In general, we observe that the lower the root-mean-square deviation (RMSD) of the docked complex (compared to the X-ray complex) the closer its free energy of dissociation (deltaGd(o)) is to that calculated from the X-ray complex. On the other hand, we note a significant scatter between the deltaGd(o) and the RMSD of the docked complexes. We have identified a group of seven docked complexes with deltaGd(o) values very close to the one calculated from the X-ray complex but with significantly dissimilar structures. The analysis of the corresponding enthalpy and entropy of dissociation shows a compensation effect suggesting that MLR molecules with significant structural variability can bind PP-1c and that substantial conformational flexibility in the PP-1c:MLR complex may exist in solution.  (+info)

Phorbol myristate acetate induces neutrophil NADPH-oxidase activity by two separate signal transduction pathways: dependent or independent of phosphatidylinositol 3-kinase. (78/1591)

The neutrophil NADPH-oxidase can be activated by protein kinase C (PKC) agonists such as phorbol myristate acetate (PMA), resulting in superoxide anion release. This superoxide release is independent of phosphatidylinositol 3-kinase (PI 3-kinase) because the inhibitor wortmannin does not affect the response. In this study, PMA is shown to also induce a wortmannin-sensitive NADPH-oxidase activation, however, not resulting in release of superoxide but in intracellular production of the radical. This indicates that two pools of NADPH-oxidase, one localized in the plasma membrane and the other in the granule membranes, are separately regulated and the signal transduction pathways leading to activation of these pools differ regarding involvement of PI 3-kinase. Activation of both pools was dependent on ERK/MAPK kinase (MEK) activity and protein phosphatase 1 and/or 2A. As the two oxidase responses were differently affected by the inhibitor Go-6850, different PKC isozymes are suggested to take part in the two signal transduction pathways.  (+info)

Protein phosphatase 2A inhibitors, I(1)(PP2A) and I(2)(PP2A), associate with and modify the substrate specificity of protein phosphatase 1. (79/1591)

Recombinant I(1)(PP2A) and I(2)(PP2A) did not affect the activity of the catalytic subunit of protein phosphatase 1 (PP1(C)) with (32)P-labeled myelin basic protein, histone H1, and phosphorylase when assayed in the absence of divalent cations. However, in the presence of Mn(2+), I(1)(PP2A) and I(2)(PP2A) stimulated PP1(C) activity by 15-20-fold with myelin basic protein and histone H1 but not phosphorylase. Half-maximal stimulation occurred at 2 and 4 nM I(1)(PP2A) and I(2)(PP2A), respectively. Moreover, I(1)(PP2A) and I(2)(PP2A) reduced the Mn(2+) requirement by about 30-fold to 10 microM. In contrast, PP1(C) activity was unaffected by I(1)(PP2A) and I(2)(PP2A) in the presence of Co(3+) (0.1 mM), Mg(2+) (2 mM), Ca(2+) (0.5 mM), and Zn(2+) (0.1 mM). Following gel filtration chromatography on Sephacryl S-200 in the presence of Mn(2+), PP1(C) coeluted with I(1)(PP2A) and I(2)(PP2A) in the void volume. However, when I(1)(PP2A) and I(2)(PP2A) or Mn(2+) were omitted, PP1(C) emerged with a V(e)/V(0) of approximately 1.6. The results demonstrate that I(1)(PP2A) and I(2)(PP2A) associate with and modify the substrate specificity of PP1(C) in the presence of physiological concentrations of Mn(2+). A novel role is suggested for I(1)(PP2A) and I(2)(PP2A) in the reciprocal regulation of two major mammalian serine/threonine phosphatases, PP1 and PP2A.  (+info)

Insulin-stimulated phosphorylation of the protein phosphatase-1 striated muscle glycogen-targeting subunit and activation of glycogen synthase. (80/1591)

Protein phosphatase-1 (PP-1) in heart and skeletal muscle binds to a glycogen-targeting subunit (G(M)) in the sarcoplasmic reticulum. Phosphorylation of G(M) has been postulated to govern activity of PP1 in response to adrenaline and insulin. In this study, we used biochemical assays and G(M) expression in living cells to examine the effects of insulin on the phosphorylation of G(M), and the binding of PP-1 to G(M). We also assayed glycogen synthase activation in cells expressing wild type G(M) and G(M) mutated at the phosphorylation sites. In biochemical assays kinase(s) prepared from insulin-stimulated Chinese hamster ovary (CHO-IR) cells and C2C12 myotubes phosphorylated a glutathione S-transferase (GST) fusion protein, GST-G(M)(1-240), at both site 1 (Ser(48)) and site 2 (Ser(67)). Phosphorylation of both sites was dependent on activation of the mitogen-activated protein kinase pathway, involving in particular ribosomal protein S6 kinase. Full-length G(M) was expressed in CHO-IR cells and metabolic (32)P labeling at sites 1 and 2 was increased by insulin treatment. The G(M) expressed in CHO-IR cells or in C2C12 myotubes co-immunoprecipitated endogenous PP-1, and association was transiently lost following treatment of the cells with insulin. In contrast PP-1 binding to G(M)(S67T), a version of G(M) not phosphorylated at site 2, was unaffected by insulin treatment. Expression of G(M) increased basal activity of endogenous glycogen synthase in CHO-IR cells. Insulin stimulated glycogen synthase activity the same extent in cells expressing wild type G(M) or G(M) mutated to eliminate phosphorylation site 1 and/or site 2. Phosphorylation of G(M) is stimulated by insulin, but this phosphorylation is not involved in insulin control of glycogen metabolism. We speculate that other functions of G(M) at the sarcoplasmic reticulum membrane might be affected by insulin.  (+info)