Structure-based functional motif identifies a potential disulfide oxidoreductase active site in the serine/threonine protein phosphatase-1 subfamily. (49/1591)

In previous work, 3-dimensional descriptors of protein function ('fuzzy functional forms') were used to identify disulfide oxidoreductase active sites in high-resolution protein structures. During this analysis, a potential disulfide oxidoreductase active site in the serine/threonine protein phosphatase-1 (PP1) crystal structure was discovered. In PP1, the potential redox active site is located in close proximity to the phosphatase active site. This result is interesting in view of literature suggesting that serine/threonine phosphatases could be subject to redox control mechanisms within the cell; however, the actual source of this control is unknown. Additional analysis presented here shows that the putative oxidoreductase active site is highly conserved in the serine/threonine phosphatase-1 subfamily, but not in the serine/threonine phosphatase-2A or -2B subfamilies. These results demonstrate the significant advantages of using structure-based motifs for protein functional site identification. First, a putative disulfide oxidoreductase active site has been identified in serine-threonine phosphatases using a descriptor built from the glutaredoxin/thioredoxin family, proteins that have no apparent evolutionary relationship whatsoever to the PP1 proteins. Second, the proximity of the putative disulfide oxidoreductase active site to the phosphatase active site provides evidence toward a regulatory control mechanism. No sequence-based method could provide either piece of information.  (+info)

CD2 and CD3 associate independently with CD5 and differentially regulate signaling through CD5 in Jurkat T cells. (50/1591)

In T lymphocytes, the CD2 and CD5 glycoproteins are believed to be involved in the regulation of signals elicited by the TCR/CD3 complex. Here we show that CD2 and CD3 independently associate with CD5 in human PBMC and Jurkat cells. CD5 coprecipitates with CD2 in CD3-deficient cells and, conversely, coprecipitates with CD3 in cells devoid of CD2. In unstimulated CD2+ CD3+ Jurkat cells, CD5 associates equivalently with CD2 and CD3 and is as efficiently phosphorylated in CD2 as in CD3 immune complexes. However, upon activation the involvement of CD5 is the opposite in the CD2 and CD3 pathways. CD5 becomes rapidly tyrosine phosphorylated after CD3 stimulation, but is dephosphorylated upon CD2 cross-linking. These opposing effects correlate with the decrease in the activity of the SH2 domain-containing protein phosphatase 1 (SHP-1) following CD3 activation vs an enhanced activity of the phosphatase after CD2 triggering. The failure of CD5 to become phosphorylated on tyrosine residues in the CD2 pathway has no parallel with the lack of use of zeta-chains in CD2 signaling; contrasting with comparable levels of association of CD2 or CD3 with CD5, zeta associates with CD2 only residually and is nevertheless slightly phosphorylated after CD2 stimulation. The modulation of CD5 phosphorylation may thus represent a level of regulation controlled by CD2 in signal transduction mechanisms in human T lymphocytes.  (+info)

Diminished basal phosphorylation level of phospholamban in the postinfarction remodeled rat ventricle: role of beta-adrenergic pathway, G(i) protein, phosphodiesterase, and phosphatases. (51/1591)

Three weeks after myocardial infarction (MI) in the rat, remodeled hypertrophy of noninfarcted myocardium is at its maximum and the heart is in a compensated stage with no evidence of heart failure. Our hemodynamic measurements at this stage showed a slight but insignificant decrease of +dP/dt but a significantly higher left ventricular end-diastolic pressure. To investigate the basis of the diastolic dysfunction, we explored possible defects in the beta-adrenergic receptor-G(s/i) protein-adenylyl cyclase-cAMP-protein kinase A-phosphatase pathway, as well as molecular or functional alterations of sarcoplasmic reticulum Ca(2+)-ATPase and phospholamban (PLB). We found no significant difference in both mRNA and protein levels of sarcoplasmic reticulum Ca(2+)-ATPase and PLB in post-MI left ventricle compared with control. However, the basal levels of both the protein kinase A-phosphorylated site (Ser16) of PLB (p16-PLB) and the calcium/calmodulin-dependent protein kinase-phosphorylated site (Thr17) of PLB (p17-PLB) were decreased by 76% and 51% in post-MI myocytes (P<0.05), respectively. No change was found in the beta-adrenoceptor density, G(salpha) protein level, or adenylyl cyclase activity. Inhibition of phosphodiesterase and G(i) protein by Ro-20-1724 and pertussis toxin, respectively, did not correct the decreased p16-PLB or p17-PLB levels. Stimulation of beta-adrenoceptor or adenylyl cyclase increased both p16-PLB and p17-PLB in post-MI myocytes to the same levels as in sham myocytes, suggesting that decreased p16-PLB and p17-PLB in post-MI myocytes is not due to a decrease in the generation of p16-PLB or p17-PLB. We found that type 1 phosphatase activity was increased by 32% (P<0.05) with no change in phosphatase 2A activity. Okadaic acid, a protein phosphatase inhibitor, significantly increased p16-PLB and p17-PLB levels in post-MI myocytes and partially corrected the prolonged relaxation of the [Ca(2+)](i) transient. In summary, prolonged relaxation of post-MI remodeled myocardium could be explained, in part, by altered basal levels of p16-PLB and p17-PLB caused by increased protein phosphatase 1 activity.  (+info)

Distinct roles for PP1 and PP2A in phosphorylation of the retinoblastoma protein. PP2a regulates the activities of G(1) cyclin-dependent kinases. (52/1591)

The function of the retinoblastoma protein (pRB) in controlling the G(1) to S transition is regulated by phosphorylation and dephosphorylation on serine and threonine residues. While the roles of cyclin-dependent kinases in phosphorylating and inactivating pRB have been characterized in detail, the roles of protein phosphatases in regulating the G(1)/S transition are not as well understood. We used cell-permeable inhibitors of protein phosphatases 1 and 2A to assess the contributions of these phosphatases in regulating cyclin-dependent kinase activity and pRB phosphorylation. Treating asynchronously growing Balb/c 3T3 cells with PP2A-selective concentrations of either okadaic acid or calyculin A caused a time- and dose-dependent decrease in pRB phosphorylation. Okadaic acid and calyculin A had no effect on pRB phosphatase activity even though PP2A was completely inhibited. The decrease in pRB phosphorylation correlated with inhibitor-induced suppression of G(1) cyclin-dependent kinases including CDK2, CDK4, and CDK6. The inhibitors also caused decreases in the levels of cyclin D2 and cyclin E, and induction of the cyclin-dependent kinase inhibitors p21(Cip1) and p27(Kip1). The decrease in cyclin-dependent kinase activities were not dependent on induction of cyclin-dependent kinase inhibitors since CDK inhibition still occurred in the presence of actinomycin D or cycloheximide. In contrast, selective inhibition of protein phosphatase 1 with tautomycin inhibited pRB phosphatase activity and maintained pRB in a highly phosphorylated state. The results show that protein phosphatase 1 and protein phosphatase 2A, or 2A-like phosphatases, play distinct roles in regulating pRB function. Protein phosphatase 1 is associated with the direct dephosphorylation of pRB while protein phosphatase 2A is involved in pathways regulating G(1) cyclin-dependent kinase activity.  (+info)

Functional interaction of Fas-associated phosphatase-1 (FAP-1) with p75(NTR) and their effect on NF-kappaB activation. (53/1591)

The common neurotrophin receptor p75(NTR), a member of the tumor necrosis factor (TNF) receptor superfamily, plays an important role in several cellular signaling cascades, including that leading to apoptosis. FAP-1 (Fas-associated phosphatase-1), which binds to the cytoplasmic tail of Fas, was originally identified as a negative regulator of Fas-mediated apoptosis. Here we have shown by co-immunoprecipitation that FAP-1 also binds to the p75(NTR) cytoplasmic domain in vivo through the interaction between the third PDZ domain of FAP-1 and C-terminal Ser-Pro-Val residues of p75(NTR). Furthermore, cells expressing a FAP-1/green fluorescent protein showed intracellular co-localization of FAP-1 and p75(NTR) at the plasma membrane. To elucidate the functional role of this physical interaction, we examined TRAF6 (TNF receptor-associated factor 6)-mediated NF-kappaB activation and tamoxifen-induced apoptosis in 293T cells expressing p75(NTR). The results revealed that TRAF6-mediated NF-kappaB activation was suppressed by p75(NTR) and that the p75(NTR)-mediated NF-kappaB suppression was reduced by FAP-1 expression. Interestingly, a mutant of the p75(NTR) intracellular domain with a single substitution of a Met for Val in its C-terminus, which cannot interact with FAP-1, displayed enhanced pro-apoptotic activity in 293T transfected cells. Thus, similar to Fas, FAP-1 may be involved in suppressing p75(NTR)-mediated pro-apoptotic signaling through its interaction with three C-terminal amino acids (tSPV). Thus, FAP-1 may regulate p75(NTR)-mediated signal transduction by physiological interaction through its third PDZ domain.  (+info)

BH-protocadherin-c, a member of the cadherin superfamily, interacts with protein phosphatase 1 alpha through its intracellular domain. (54/1591)

Using a yeast two-hybrid system, we isolated eight cDNA clones which interacted with BH-protocadherin-c (BH-Pcdh-c) from the human brain cDNA library. One clone encoded protein phosphatase type I isoform alpha (PP1alpha) and another two PP1alpha2. PP1alpha was co-immunoprecipitated from the extract of a gastric adenocarcinoma cell line MKN-28 with anti-BH-Pcdh-c antibody. PP1alpha activity towards glycogen phosphorylase was inhibited by the intracellular domain of BH-Pcdh-c. Inhibition of the phosphatase required more than the minimal domain of BH-Pcdh-c which could associate with PP1alpha. In situ hybridization revealed that BH-Pcdh-c mRNA was predominantly expressed in cerebral cortex neurons in the adult mouse brain.  (+info)

Brain actin-associated protein phosphatase 1 holoenzymes containing spinophilin, neurabin, and selected catalytic subunit isoforms. (55/1591)

We previously characterized PP1bp134 and PP1bp175, two neuronal proteins that bind the protein phosphatase 1 catalytic subunit (PP1). Here we purify from rat brain actin-cytoskeletal extracts PP1(A) holoenzymes selectively enriched in PP1gamma(1) over PP1beta isoforms and also containing PP1bp134 and PP1bp175. PP1bp134 and PP1bp175 were identified as the synapse-localized F-actin-binding proteins spinophilin (Allen, P. B., Ouimet, C. C., and Greengard, P. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 9956-9561; Satoh, A., Nakanishi, H., Obaishi, H., Wada, M., Takahashi, K., Satoh, K., Hirao, K., Nishioka, H., Hata, Y., Mizoguchi, A., and Takai, Y. (1998) J. Biol. Chem. 273, 3470-3475) and neurabin (Nakanishi, H., Obaishi, H., Satoh, A., Wada, M., Mandai, K., Satoh, K., Nishioka, H. , Matsuura, Y., Mizoguchi, A., and Takai, Y. (1997) J. Cell Biol. 139, 951-961), respectively. Recombinant spinophilin and neurabin interacted with endogenous PP1 and also with each other when co-expressed in HEK293 cells. Spinophilin residues 427-470, or homologous neurabin residues 436-479, were sufficient to bind PP1 in gel overlay assays, and selectively bound PP1gamma(1) from a mixture of brain protein phosphatase catalytic subunits; additional N- and C-terminal sequences were required for potent inhibition of PP1. Immunoprecipitation of spinophilin or neurabin from crude brain extracts selectively coprecipitated PP1gamma(1) over PP1beta. Moreover, immunoprecipitation of PP1gamma(1) from brain extracts efficiently coprecipitated spinophilin and neurabin, whereas PP1beta immunoprecipitation did not. Thus, PP1(A) holoenzymes containing spinophilin and/or neurabin target specific neuronal PP1 isoforms, facilitating efficient regulation of synaptic phosphoproteins.  (+info)

Protein phosphatases PP1 and PP2A are located in distinct positions in the Chlamydomonas flagellar axoneme. (56/1591)

We postulated that microcystin-sensitive protein phosphatases are integral components of the Chlamydomonas flagellar axoneme, positioned to regulate inner arm dynein activity. To test this, we took a direct biochemical approach. Microcystin-Sepharose affinity purification revealed a prominent 35-kDa axonemal protein, predicted to be the catalytic subunit of type-1 protein phosphatase (PP1c). We cloned the Chlamydomonas PP1c and produced specific polyclonal peptide antibodies. Based on western blot analysis, the 35-kDa PP1c is anchored in the axoneme. Moreover, analysis of flagella and axonemes from mutant strains revealed that PP1c is primarily, but not exclusively, anchored in the central pair apparatus, associated with the C1 microtubule. Thus, PP1 is part of the central pair mechanism that controls flagellar motility. Two additional axonemal proteins of 62 and 37 kDa were also isolated using microcystin-Sepharose affinity. Based on direct peptide sequence and western blots, these proteins are the A- and C-subunits of type 2A protein phosphatase (PP2A). The axonemal PP2A is not one of the previously identified components of the central pair apparatus, outer arm dynein, inner arm dynein, dynein regulatory complex or the radial spokes. We postulate PP2A is anchored on the doublet microtubules, possibly in position to directly control inner arm dynein activity.  (+info)