(1/8892) CCAAT/enhancer-binding protein beta is an accessory factor for the glucocorticoid response from the cAMP response element in the rat phosphoenolpyruvate carboxykinase gene promoter.

The cyclic AMP response element (CRE) of the rat phosphoenolpyruvate carboxykinase (PEPCK) gene promoter is required for a complete glucocorticoid response. Proteins known to bind the PEPCK CRE include the CRE-binding protein (CREB) and members of the CCAAT/enhancer-binding protein (C/EBP) family. We took two different approaches to determine which of these proteins provides the accessory factor activity for the glucocorticoid response from the PEPCK CRE. The first strategy involved replacing the CRE of the PEPCK promoter/chloramphenicol acetyltransferase reporter plasmid (pPL32) with a consensus C/EBP-binding sequence. This construct, termed pDeltaCREC/EBP, binds C/EBPalpha and beta but not CREB, yet it confers a nearly complete glucocorticoid response when transiently transfected into H4IIE rat hepatoma cells. These results suggest that one of the C/EBP family members may be the accessory factor. The second strategy involved co-transfecting H4IIE cells with a pPL32 mutant, in which the CRE was replaced with a GAL4-binding sequence (pDeltaCREGAL4), and various GAL4 DNA-binding domain (DBD) fusion protein expression vectors. Although chimeric proteins consisting of the GAL4 DBD fused to either CREB or C/EBPalpha are able to confer an increase in basal transcription, they do not facilitate the glucocorticoid response. In contrast, a fusion protein consisting of the GAL4 DBD and amino acids 1-118 of C/EBPbeta provides a significant glucocorticoid response. Additional GAL4 fusion studies were done to map the minimal domain of C/EBPbeta needed for accessory factor activity to the glucocorticoid response. Chimeric proteins containing amino acid regions 1-84, 52-118, or 85-118 of C/EBPbeta fused to the GAL4 DBD do not mediate a glucocorticoid response. We conclude that the amino terminus of C/EBPbeta contains a multicomponent domain necessary to confer accessory factor activity to the glucocorticoid response from the CRE of the PEPCK gene promoter.  (+info)

(2/8892) p38 but not p44/42 mitogen-activated protein kinase is required for nitric oxide synthase induction mediated by lipopolysaccharide in RAW 264.7 macrophages.

Protein kinase C (PKC)-alpha, -betaI, and -delta are known to be involved in the lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 macrophages. The role of mitogen-activated protein kinases (MAPK) p44/42 and p38 in the LPS effect was studied further. LPS-mediated NO release and the inducible form of NO synthase expression were inhibited by the p38 inhibitor, SB 203580, but not by the MAPK kinase inhibitor, PD 98059. Ten-minute treatment of cells with LPS resulted in the activation of p44/42 MAPK, p38, and c-Jun NH2-terminal kinase. Marked or slight activation, respectively, of p44/42 MAPK or p38 was also seen after 10-min treatment with 12-O-tetradecanoylphorbol-13-acetate, but c-Jun NH2-terminal kinase activation did not occur. Tyrosine kinase inhibitor, genestein, attenuated the LPS-induced activation of both p44/42 MAPK and p38, whereas the PKC inhibitors, Ro 31-8220 and calphostin C, or long-term treatment with 12-O-tetradecanoylphorbol-13-acetate resulted in inhibition of p44/42 MAPK activation, but had only a slight effect on p38 activation, indicating that LPS-mediated PKC activation resulted in the activation of p44/42 MAPK. Nuclear factor-kappaB (NF-kappaB)-specific DNA-protein-binding activity in the nuclear extracts was enhanced by 10-min, 1-h, or 24-h treatment with LPS. Analysis of the proteins involved in NF-kappaB binding showed translocation of p65 from the cytosol to the nucleus after 10-min treatment with LPS. The onset of NF-kappaB activation correlated with the cytosolic degradation of both inhibitory proteins of NF-kappaB, IkappaB-alpha and IkappaB-beta. IkappaB-alpha was resynthesized rapidly after loss (1-h LPS treatment), whereas IkappaB-beta levels were not restored until after 24-h treatment. SB 203580 but not PD 98059 inhibited the LPS-induced stimulation of NF-kappaB DNA-protein binding. Thus, activation of p38 but not p44/42 MAPK by LPS resulted in the stimulation of NF-kappaB-specific DNA-protein binding and the subsequent expression of inducible form of NO synthase and NO release in RAW 264.7 macrophages.  (+info)

(3/8892) Role of interleukin (IL)-2 receptor beta-chain subdomains and Shc in p38 mitogen-activated protein (MAP) kinase and p54 MAP kinase (stress-activated protein Kinase/c-Jun N-terminal kinase) activation. IL-2-driven proliferation is independent of p38 and p54 MAP kinase activation.

We have shown recently that interleukin (IL)-2 activates the mitogen-activated protein (MAP) kinase family members p38 (HOG1/stress-activated protein kinase II) and p54 (c-Jun N-terminal kinase/stress-activated protein kinase I). Furthermore, the p38 MAP kinase inhibitor SB203580 inhibited IL-2-driven T cell proliferation, suggesting that p38 MAP kinase might be involved in mediating proliferative signals. In this study, using transfected BA/F3 cell lines, it is shown that both the acidic domain and the membrane-proximal serine-rich region of the IL-2Rbeta chain are required for p38 and p54 MAP kinase activation and that, as for p42/44 MAP kinase, this activation requires the Tyr338 residue of the acidic domain, the binding site for Shc. It is well established that the acidic domain of the IL-2Rbeta chain is dispensable for IL-2-driven proliferation, and thus our observations suggest that neither p38 nor p54 MAP kinase activation is required for IL-2-driven proliferation of BA/F3 cells. In addition, the tetravalent guanylhydrazone inhibitor of proinflammatory cytokine production, CNI-1493, can block the activation of p54 and p38 MAP kinases by IL-2 but has no effect on IL-2-driven proliferation of BA/F3 cells, activated primary T cells, or a cytotoxic T cell line. Furthermore, our observations provide evidence for the existence of an additional, unknown target of the p38 MAP kinase inhibitor SB203580, the activation of which is essential for mitogenic signaling by IL-2.  (+info)

(4/8892) On the mechanism of histaminergic inhibition of glutamate release in the rat dentate gyrus.

1. Histaminergic depression of excitatory synaptic transmission in the rat dentate gyrus was investigated using extracellular and whole-cell patch-clamp recording techniques in vitro. 2. Application of histamine (10 microM, 5 min) depressed synaptic transmission in the dentate gyrus for 1 h. This depression was blocked by the selective antagonist of histamine H3 receptors, thioperamide (10 microM). 3. The magnitude of the depression caused by histamine was inversely related to the extracellular Ca2+ concentration. Application of the N-type calcium channel blocker omega-conotoxin (0. 5 or 1 microM) or the P/Q-type calcium channel blocker omega-agatoxin (800 nM) did not prevent depression of synaptic transmission by histamine. 4. The potassium channel blocker 4-aminopyridine (4-AP, 100 microM) enhanced synaptic transmission and reduced the depressant effect of histamine (10 microM). 4-AP reduced the effect of histamine more in 2 mM extracellular calcium than in 4 mM extracellular calcium. 5. Histamine (10 microM) did not affect the amplitude of miniature excitatory postsynaptic currents (mEPSCs) and had only a small effect on their frequency. 6. Histaminergic depression was not blocked by an inhibitor of serine/threonine protein kinases, H7 (100 microM), or by an inhibitor of tyrosine kinases, Lavendustin A (10 microM). 7. Application of adenosine (20 microM) or the adenosine A1 agonist N6-cyclopentyladenosine (CPA, 0.3 microM) completely occluded the effect of histamine (10 microM). 8. We conclude that histamine, acting on histamine H3 receptors, inhibits glutamate release by inhibiting presynaptic calcium entry, via a direct G-protein-mediated inhibition of multiple calcium channels. Histamine H3 receptors and adenosine A1 receptors act upon a common final effector to cause presynaptic inhibition.  (+info)

(5/8892) Effect of inhibition of cholesterol synthetic pathway on the activation of Ras and MAP kinase in mesangial cells.

Intermediary metabolites of cholesterol synthetic pathway are involved in cell proliferation. Lovastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, blocks mevalonate synthesis, and has been shown to inhibit mesangial cell proliferation associated with diverse glomerular diseases. Since inhibition of farnesylation and plasma membrane anchorage of the Ras proteins is one suggested mechanism by which lovastatin prevents cellular proliferation, we investigated the effect of lovastatin and key mevalonate metabolites on the activation of mitogen-activated protein kinase (MAP kinase) and Ras in murine glomerular mesangial cells. The preincubation of mesangial cells with lovastatin inhibited the activation of MAP kinase stimulated by either FBS, PDGF, or EGF. Mevalonic acid and farnesyl-pyrophosphate, but not cholesterol or LDL, significantly prevented lovastatin-induced inhibition of agonist-stimulated MAP kinase. Lovastatin inhibited agonist-induced activation of Ras, and mevalonic acid and farnesylpyrophosphate antagonized this effect. Parallel to the MAP kinase and Ras data, lovastatin suppressed cell growth stimulated by serum, and mevalonic acid and farnesylpyrophosphate prevented lovastatin-mediated inhibition of cellular growth. These results suggest that lovastatin, by inhibiting the synthesis of farnesol, a key isoprenoid metabolite of mevalonate, modulates Ras-mediated cell signaling events associated with mesangial cell proliferation.  (+info)

(6/8892) ATP counteracts the rundown of gap junctional channels of rat ventricular myocytes by promoting protein phosphorylation.

1. The degree of cell-to-cell coupling between ventricular myocytes of neonatal rats appeared well preserved when studied in the perforated version of the patch clamp technique or, in double whole-cell conditions, when ATP was present in the patch pipette solution. In contrast, when ATP was omitted, the amplitude of junctional current rapidly declined (rundown). 2. To examine the mechanism(s) of ATP action, an 'internal perfusion technique' was adapted to dual patch clamp conditions, and reintroduction of ATP partially reversed the rundown of junctional channels. 3. Cell-to-cell communication was not preserved by a non-hydrolysable ATP analogue (5'-adenylimidodiphosphate, AMP-PNP), indicating that the effect most probably did not involve direct interaction of ATP with the channel-forming proteins. 4. An ATP analogue supporting protein phosphorylation but not active transport processes (adenosine 5'-O-(3-thiotriphosphate), ATPgammaS) maintained normal intercellular communication, suggesting that the effect was due to kinase activity rather than to altered intracellular Ca2+. 5. A broad spectrum inhibitor of endogenous serine/threonine protein kinases (H7) reversibly reduced the intercellular coupling. A non-specific exogenous protein phosphatase (alkaline phosphatase) mimicked the effects of ATP deprivation. The non-specific inhibition of endogenous protein phosphatases resulted in the preservation of substantial cell-to-cell communication in ATP-free conditions. 6. The activity of gap junctional channels appears to require both the presence of ATP and protein kinase activity to counteract the tonic activity of endogenous phosphatase(s).  (+info)

(7/8892) Properties of fast endocytosis at hippocampal synapses.

Regulation of synaptic transmission is a widespread means for dynamic alterations in nervous system function. In several cases, this regulation targets vesicular recycling in presynaptic terminals and may result in substantial changes in efficiency of synaptic transmission. Traditionally, experimental accessibility of the synaptic vesicle cycle in central neuronal synapses has been largely limited to the exocytotic side, which can be monitored with electrophysiological responses to neurotransmitter release. Recently, physiological measurements on the endocytotic portion of the cycle have been made possible by the introduction of styryl dyes such as FM1-43 as fluorescent markers for recycling synaptic vesicles. Here we demonstrate the existence of fast endocytosis in hippocampal nerve terminals and derive its kinetics from fluorescence measurements using dyes with varying rates of membrane departitioning. The rapid mode of vesicular retrieval was greatly speeded by exposure to staurosporine or elevated extracellular calcium. The effective time-constant for retrieval can be < 2 seconds under appropriate conditions. Thus, hippocampal synapses capitalize on efficient mechanisms for endocytosis and their vesicular retrieval is subject to modulatory control.  (+info)

(8/8892) Effects of eosinophil granule major basic protein on phosphatidylcholine secretion in rat type II pneumocytes.

Eosinophils are involved in inflammatory diseases such as asthma. We previously reported that activated eosinophils increased the phosphatidylcholine (PC) secretion in primary cultures of rat type II pneumocytes. Increased PC secretion was confirmed to be partly mediated by superoxide anions released from activated eosinophils. However, the influence of eosinophil granule proteins on PC secretion is unknown at present. In this study, we determined whether eosinophil major basic protein (MBP) influences PC secretion. MBP dose dependently increased the PC secretion in rat type II pneumocytes without producing any cell damage. The MBP-induced increase in PC secretion was significantly reduced by preadministration of either H-7, a protein kinase inhibitor, or 1, 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM, a chelator of intracellular Ca2+, but not by H-89, a protein kinase inhibitor. Our results suggest that the MBP-induced increase in PC secretion may provide mechanical stability and protect against lung atelectasis.  (+info)