(1/15103) Expression of the naturally occurring truncated trkB neurotrophin receptor induces outgrowth of filopodia and processes in neuroblastoma cells.

We have investigated the effects of the truncated trkB receptor isoform T1 (trkB.T1) by transient transfection into mouse N2a neuroblastoma cells. We observed that expression of trkB.T1 leads to a striking change in cell morphology characterized by outgrowth of filopodia and processes. A similar morphological response was also observed in SH-SY5Y human neuroblastoma cells and NIH3T3 fibroblasts transfected with trkB.T1. N2a cells lack endogenous expression of trkB isoforms, but express barely detectable amounts of its ligands, brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4). The morphological change was ligand-independent, since addition of exogenous BDNF or NT-4 or blockade of endogenous trkB ligands did not influence this response. Filopodia and process outgrowth was significantly suppressed when full-length trkB.TK+ was cotransfected together with trkB.T1 and this inhibitory effect was blocked by tyrosine kinase inhibitor K252a. Transfection of trkB.T1 deletion mutants showed that the morphological response is dependent on the extracellular, but not the intracellular domain of the receptor. Our results suggest a novel ligand-independent role for truncated trkB in the regulation of cellular morphology.  (+info)

(2/15103) C/EBPalpha regulates generation of C/EBPbeta isoforms through activation of specific proteolytic cleavage.

C/EBPalpha and C/EBPbeta are intronless genes that can produce several N-terminally truncated isoforms through the process of alternative translation initiation at downstream AUG codons. C/EBPbeta has been reported to produce four isoforms: full-length 38-kDa C/EBPbeta, 35-kDa LAP (liver-enriched transcriptional activator protein), 21-kDa LIP (liver-enriched transcriptional inhibitory protein), and a 14-kDa isoform. In this report, we investigated the mechanisms by which C/EBPbeta isoforms are generated in the liver and in cultured cells. Using an in vitro translation system, we found that LIP can be generated by two mechanisms: alternative translation and a novel mechanism-specific proteolytic cleavage of full-length C/EBPbeta. Studies of mice in which the C/EBPalpha gene had been deleted (C/EBPalpha-/-) showed that the regulation of C/EBPbeta proteolysis is dependent on C/EBPalpha. The induction of C/EBPalpha in cultured cells leads to induced cleavage of C/EBPbeta to generate the LIP isoform. We characterized the cleavage activity in mouse liver extracts and found that the proteolytic cleavage activity is specific to prenatal and newborn livers, is sensitive to chymostatin, and is completely abolished in C/EBPalpha-/- animals. The lack of cleavage activity in the livers of C/EBPalpha-/- mice correlates with the decreased levels of LIP in the livers of these animals. Analysis of LIP production during liver regeneration showed that, in this system, the transient induction of LIP is dependent on the third AUG codon and most likely involves translational control. We propose that there are two mechanisms by which C/EBPbeta isoforms might be generated in the liver and in cultured cells: one that is determined by translation and a second that involves C/EBPalpha-dependent, specific proteolytic cleavage of full-length C/EBPbeta. The latter mechanism implicates C/EBPalpha in the regulation of posttranslational generation of the dominant negative C/EBPbeta isoform, LIP.  (+info)

(3/15103) Expression of novel alternatively spliced isoforms of the oct-1 transcription factor.

Analysis of the alternatively spliced isoforms of the human and mouse oct-1 genes, combined with their exon-intron structure, show a high level of evolutionary conservation between these two species. The differential expression of several oct-1 isoforms was examined by reverse transcription-polymerase chain reaction performed on the 3' region of the murine oct-1 cDNA. Variations in the relative levels and patterns of expression of the isoforms were found among different tissues. Three novel isoforms originating from the 3'-distal region of oct-1, were isolated and sequenced: Two were derived from testis, and one from myeloma cells. Splicing out of different exons as revealed in the structure of these isoforms results in reading frameshifts that presumably lead to the expression of shortened Oct-1 proteins, with distinct C-terminal tails. Altogether, six out of the eight known murine oct-1 isoforms may have distinct C-termini, implying that these multiple tails have different functional roles in cellular differentiation and physiology.  (+info)

(4/15103) The role of alternative splicing of the adhesion molecule, CD44, in lymphoid malignancy.

AIM: To investigate the expression of CD44 isoforms containing variant exon 6 (v6) in a well characterised cohort of patients with non-Hodgkin's lymphoma (NHL) and chronic lymphocytic leukaemia (CLL), and to correlate this with phenotype and disease course. METHODS: Cryostat sections of OCT embedded diagnostic nodal material from NHL patients and cryopreserved mononuclear preparations from CLL patients were used as sources of RNA. After reverse transcription, PCR was carried out with amplimers positioned at either side of the variant exon insertion site to amplify all possible CD44 isoforms. Those isoforms containing v6 were identified after Southern blotting and hybridisation with a radiolabelled oligonucleotide. RESULTS: Of 32 NHL samples analysed, 16 did not express CD44 isoforms containing v6, six expressed an isoform containing exon v6 alone, and 10 expressed v6 long isoforms which contained exon v6 in addition to other variant exons. These data did not correlate with lymphoma classification, disease staging, or the presence or absence of extranodal disease. However, those patients expressing v6 long CD44 isoforms had a worse overall survival than those that did not. The plateau of the survival curves was 50% compared with 82%. No v6 long isoforms were detected in the 21 CLL samples investigated. CONCLUSIONS: The expression of v6 long CD44 isoforms is associated with aggressive disease in NHL, independent of grade, stage, or presence of extranodal disease.  (+info)

(5/15103) Physical characterization of a low-charge glycoform of the MUC5B mucin comprising the gel-phase of an asthmatic respiratory mucous plug.

We have previously noted that sequential extraction of an asthmatic mucous exudate with 6 M guanidinium chloride yielded a fraction of the mucins that were most resistant to solubilization and of high Mr [Sheehan, Richardson, Fung, Howard and Thornton (1995) Am. J. Respir. Cell Mol. Biol. 13, 748-756]. Here we show that this mucin fraction is dominated (at least 96% of the total) by the low-charge glycoform of the MUC5B gene product. Seen in the electron microscope the mucins appeared mainly as compact 'island' structures composed of linear threads often emanating from globular 'nodes' rather than the discrete linear threads more typical of mucins that we have previously described. The effect of reducing agents was as expected for other gel-forming mucins, i.e. reduced subunits or monomers of Mr 3x10(6)) were produced within 15 min of treatment. Kinetic experiments on the cleavage of the intact mucins with the proteinase trypsin indicated two clear regimes of fragmentation. An initial rapid cleavage generated mucins ranging from Mr=4x10(6) to 30x10(6) that in the electron microscope appeared as polydisperse threads (500-3000 nm in length), similar to normal and other respiratory mucins that we have previously characterized. A subsequent slower fragmentation over many hours yielded a major fragment of Mr 3x10(6) and length 200-600 nm, very similar in size and Mr to the subunits obtained by reduction. The results suggest that the MUC5B mucin is assembled, first into polydisperse linear threads, which are then linked together via a protein-mediated process. This might involve part of the mucin polypeptide or an as yet unidentified protein(s). The high proteinase susceptibility of the linkage suggests that it might be a point of control for mucin size and thus mucus rheology.  (+info)

(6/15103) Gibberellic acid stabilises microtubules in maize suspension cells to cold and stimulates acetylation of alpha-tubulin.

Gibberellic acid is known to stabilise microtubules in plant organs against depolymerisation. We have now devised a simplified cell system for studying this. Pretreatment of a maize cell suspension with gibberellic acid for just 3 h stabilised protoplast microtubules against depolymerisation on ice. In other eukaryotes, acetylation of alpha-tubulin is known to correlate with microtubule stabilisation but this is not established in plants. By isolating the polymeric tubulin fraction from maize cytoskeletons and immunoblotting with the antibody 6-11B-1, we have demonstrated that gibberellic acid stimulates the acetylation of alpha-tubulin. This is the first demonstrated link between microtubule stabilisation and tubulin acetylation in higher plants.  (+info)

(7/15103) The latrophilin family: multiply spliced G protein-coupled receptors with differential tissue distribution.

Latrophilin is a brain-specific Ca2+-independent receptor of alpha-latrotoxin, a potent presynaptic neurotoxin. We now report the finding of two novel latrophilin homologues. All three latrophilins are unusual G protein-coupled receptors. They exhibit strong similarities within their lectin, olfactomedin and transmembrane domains but possess variable C-termini. Latrophilins have up to seven sites of alternative splicing; some splice variants contain an altered third cytoplasmic loop or a truncated cytoplasmic tail. Only latrophilin-1 binds alpha-latrotoxin; it is abundant in brain and is present in endocrine cells. Latrophilin-3 is also brain-specific, whereas latrophilin-2 is ubiquitous. Together, latrophilins form a novel family of heterogeneous G protein-coupled receptors with distinct tissue distribution and functions.  (+info)

(8/15103) Alternative splicing generates multiple mRNA forms of the acetylcholine receptor gamma-subunit in rat muscle.

The fetal type acetylcholine receptor, composed of the alphabeta gammadelta subunits, has shown a highly variable channel kinetics during postnatal development. We examine the hypothesis whether such a variability could result from multiple channel forms, differing in the N-terminus of the gamma-subunit. RT-PCR revealed, in addition to the full-length mRNA, three new forms lacking exon 4. One of them in addition lacks 19 nucleotides from exon 5, predicting a complete subunit, with a 43 residues shorter N-terminus. A third one lacking the complete exon 5 predicts a subunit without transmembrane segments. These forms, generated by alternative splicing, may account for the kinetic variability of the acetylcholine receptor channel.  (+info)