Loading...
(1/5726) A novel in vivo assay for the analysis of protein-protein interaction.

The Ras Recruitment System (RRS) is a method for identification and isolation of protein-protein interaction. The method is based on translocation of cytoplasmic mammalian Ras protein to the inner leaflet of the plasma membrane through protein-protein interaction. The system is studied in a temperature-sensitive yeast strain where the yeast Ras guanyl nucleotide exchange factor is inactive at 36 degrees C. Protein-protein interaction results in cell growth at the restrictive temperature. We developed a gene reporter assay for the analysis of protein-protein interaction in mammalian cells. Ras activation in mammalian cells induces the mitogen-activated kinase cascade (MAPK), which can be monitored using Ras-dependent reporter genes. This greatly extends the usefulness of the system and provides a novel assay for protein-protein interaction in mammalian cells.  (+info)

(2/5726) The molecular basis of FHA domain:phosphopeptide binding specificity and implications for phospho-dependent signaling mechanisms.

Forkhead-associated (FHA) domains are a class of ubiquitous signaling modules that appear to function through interactions with phosphorylated target molecules. We have used oriented peptide library screening to determine the optimal phosphopeptide binding motifs recognized by several FHA domains, including those within a number of DNA damage checkpoint kinases, and determined the X-ray structure of Rad53p-FHA1, in complex with a phospho-threonine peptide, at 1.6 A resolution. The structure reveals a striking similarity to the MH2 domains of Smad tumor suppressor proteins and reveals a mode of peptide binding that differs from SH2, 14-3-3, or PTB domain complexes. These results have important implications for DNA damage signaling and CHK2-dependent tumor suppression, and they indicate that FHA domains play important and unsuspected roles in S/T kinase signaling mechanisms in prokaryotes and eukaryotes.  (+info)

(3/5726) The beta-slip: a novel concept in transthyretin amyloidosis.

Transthyretin is a tetrameric plasma protein associated with two forms of amyloid disease. The structure of the highly amyloidogenic transthyretin triple mutant TTRG53S/E54D/L55S determined at 2.3 A resolution reveals a novel conformation: the beta-slip. A three-residue shift in beta strand D places Leu-58 at the position normally occupied by Leu-55 now mutated to serine. The beta-slip is best defined in two of the four monomers, where it makes new protein-protein interactions to an area normally involved in complex formation with retinol-binding protein. This interaction creates unique packing arrangements, where two protein helices combine to form a double helix in agreement with fiber diffraction and electron microscopy data. Based on these findings, a novel model for transthyretin amyloid formation is presented.  (+info)

(4/5726) C/EBP beta and Elk-1 synergistically transactivate the c-fos serum response element.

BACKGROUND: The serum response element (SRE) in the c-fos promoter is a convergence point for several signaling pathways that regulate induction of the c-fos gene. Many transcription factors regulate the SRE, including serum response factor (SRF), ternary complex factor (TCF), and CCAAT/enhancer binding protein-beta (C/EBPbeta). Independently, the TCFs and C/EBPbeta have been shown to interact with SRF and to respond to Ras-dependent signaling pathways that result in transactivation of the SRE. Due to these common observations, we addressed the possibility that C/EBPbeta and Elk-1 could both be necessary for Ras-stimulated transactivation of the SRE. RESULTS: In this report, we demonstrate that Elk-1 and C/EBPbeta functionally synergize in transactivation of both a Gal4 reporter plasmid in concert with Gal4-SRF and in transactivation of the SRE. Interestingly, this synergy is only observed upon activation of Ras-dependent signaling pathways. Furthermore, we show that Elk-1 and C/EBPbeta could interact both in an in vitro GST-pulldown assay and in an in vivo co-immunoprecipitation assay. The in vivo interaction between the two proteins is dependent on the presence of activated Ras. We have also shown that the C-terminal domain of C/EBPbeta and the N-terminal domain of Elk-1 are necessary for the proteins to interact. CONCLUSIONS: These data show that C/EBPbeta and Elk-1 synergize in SRF dependent transcription of both a Gal-4 reporter and the SRE. This suggests that SRF, TCF, and C/EBPbeta are all necessary for maximal induction of the c-fos SRE in response to mitogenic signaling by Ras.  (+info)

(5/5726) Simultaneous modelling of metabolic, genetic and product-interaction networks.

The creation of cell models from annotated genome information, as well as additional data from other databases, requires both a format and medium for its distribution. Standards are described for the representation of the data in the form of Document Type Definitions (DTDs) for XML files. Separate DTDs are detailed for genetic, metabolic and gene product-interaction networks, which can be used to hold information on individual subsystems, or which may be combined to create a whole cell DTD. In the execution of this work, a fifth DTD was also created for a metabolite thesaurus, which allows incorporation of metabolite synonyms and generic nomenclature data into the models. A gene-regulation classification scheme was also created, to facilitate incorporation of gene regulatory information in an efficient manner. The work is described with particular reference to the metabolic network of Escherichia coli, which contains 808 individual enzymes. The assignment of confidence levels to these data, through the use of Gene Ontology evidence codes, is highlighted. In silico investigations may now be performed using the mathematical simulation workbench, DBsolve, which incorporates the facility to introduce data directly from XML.  (+info)

(6/5726) Distance mapping of protein-binding sites using spin-labeled oligosaccharide ligands.

The binding of a nitroxide spin-labeled analog of N-acetyllactosamine to galectin-3, a mammalian lectin of 26 kD size, is studied to map the binding sites of this small oligosaccharide on the protein surface. Perturbation of intensities of cross-peaks in the (15)N heteronuclear single quantum coherence (HSQC) spectrum of full-length galectin-3 owing to the bound spin label is used qualitatively to identify protein residues proximate to the binding site for N-acetyllactosamine. A protocol for converting intensity measurements to a more quantitative determination of distances between discrete protein amide protons and the bound spin label is then described. This protocol is discussed as part of a drug design strategy in which subsequent perturbation of chemical shifts of distance mapped amide cross-peaks can be used effectively to screen a library of compounds for other ligands that bind to the target protein at distances suitable for chemical linkage to the primary ligand. This approach is novel in that it bypasses the need for structure determination and resonance assignment of the target protein.  (+info)

(7/5726) Domain-domain interactions of HtpG, an Escherichia coli homologue of eukaryotic HSP90 molecular chaperone.

In the present study, we investigated the domain structure and domain-domain interactions of HtpG, an Escherichia coli homologue of eukaryotic HSP90. Limited proteolysis of recombinant HtpG, revealed three major tryptic sites, i.e. Arg7-Gly8, Arg336-Glu337 and Lys552-Leu553, of which the latter two were located at the positions equivalent to the major cleavage sites of human HSP90alpha. A similar pattern was obtained by papain treatment under nondenaturing conditions but not under denaturing conditions. Thus, HtpG consists of three domains, i.e. Domain A, Met1-Arg336; domain B, Glu337-Lys552; and domain C, Leu553-Ser624, as does HSP90. The domains of HtpG were expressed and their interactions were estimated on polyacrylamide gel electrophoresis under nondenaturing conditions. As a result, two kinds of domain-domain interactions were revealed: domain B interaction with domain A of the same polypeptide and domain C of one partner with domain B of the other in the dimer. Domain B could be structurally and functionally divided into two subdomains, the N-terminal two-thirds (subdomain BI) that interacted with domain A and the C-terminal one-third (subdomain BII) that interacted with domain C. The C-terminal two-thirds of domain A, i.e. Asp116-Arg336, were sufficient for the binding to domain B. We finally propose the domain organization of an HtpG dimer.  (+info)

(8/5726) Mapping the energy surface of transmembrane helix-helix interactions.

Transmembrane helices are no longer believed to be just hydrophobic segments that exist solely to anchor proteins to a lipid bilayer, but rather they appear to have the capacity to specify function and structure. Specific interactions take place between hydrophobic segments within the lipid bilayer whereby subtle mutations that normally would be considered innocuous can result in dramatic structural differences. That such specificity takes place within the lipid bilayer implies that it may be possible to identify the most favorable interaction surface of transmembrane alpha-helices based on computational methods alone, as shown in this study. Herein, an attempt is made to map the energy surface of several transmembrane helix-helix interactions for several homo-oligomerizing proteins, where experimental data regarding their structure exist (glycophorin A, phospholamban, Influenza virus A M2, Influenza virus C CM2, and HIV vpu). It is shown that due to symmetry constraints in homo-oligomers the computational problem can be simplified. The results obtained are mostly consistent with known structural data and may additionally provide a view of possible alternate and intermediate configurations.  (+info)