In vivo formation of Cu,Zn superoxide dismutase disulfide bond in Escherichia coli. (17/52898)

We have found that the in vivo folding of periplasmic Escherichia coli Cu,Zn superoxide dismutase is assisted by DsbA, which catalyzes the efficient formation of its single disulfide bond, whose integrity is essential to ensure full catalytic activity to the enzyme. In line with these findings, we also report that the production of recombinant Xenopus laevis Cu,Zn superoxide dismutase is enhanced when the enzyme is exported in the periplasmic space or is expressed in thioredoxin reductase mutant strains. Our data show that inefficient disulfide bond oxidation in the bacterial cytoplasm inhibits Cu,Zn superoxide dismutase folding in this cellular compartment.  (+info)

The DNA binding activity of Translin is mediated by a basic region in the ring-shaped structure conserved in evolution. (18/52898)

DNA binding proteins, for the most part, function as dimers or tetramers which recognize their target sequences. Here we show that Translin, a novel single-stranded DNA end binding protein, forms a ring-shaped structure conserved throughout evolution and that this structure is responsible for its DNA binding activity. Point mutations at Leu184 and Leu191 in the leucine zipper motif of human Translin resulted in loss of the multimeric structure and abrogation of DNA binding. Point mutations at R86, H88, H90 to T86, N88, N90 in one of the basic regions, however, completely inhibited the DNA binding activity without affecting the multimeric structure. These results support the view that the DNA binding domain of Translin is formed in the ring-shaped structure in combination with its basic region (amino acids 86-97) polypeptides.  (+info)

Biophysical characterization of the structure of the amino-terminal region of gp41 of HIV-1. Implications on viral fusion mechanism. (19/52898)

A peptide of 51 amino acids corresponding to the NH2-terminal region (5-55) of the glycoprotein gp41 of human immunodeficiency virus type 1 was synthesized to study its conformation and assembly. Nuclear magnetic resonance experiments indicated the sequence NH2-terminal to the leucine zipper-like domain of gp41 was induced into helix in the micellar solution, in agreement with circular dichroism data. Light scattering experiment showed that the peptide molecules self-assembled in water into trimeric structure on average. That the peptide molecules oligomerize in aqueous solution was supported by gel filtration and diffusion coefficient experiments. Molecular dynamics simulation based on the NMR data revealed a flexible region adjacent to the hydrophobic NH2 terminus of gp41. The biological significance of the present findings on the conformational flexibility and the propensity of oligomerization of the peptide may be envisioned by a proposed model for the interaction of gp41 with membranes during fusion process.  (+info)

Maturation-induced conformational changes of HIV-1 capsid protein and identification of two high affinity sites for cyclophilins in the C-terminal domain. (20/52898)

Viral incorporation of cyclophilin A (CyPA) during the assembly of human immunodeficiency virus type-1 (HIV-1) is crucial for efficient viral replication. CyPA binds to the previously identified Gly-Pro90 site of the capsid protein p24, but its role remained unclear. Here we report two new interaction sites between cyclophilins and p24. Both are located in the C-terminal domain of p24 around Gly-Pro157 and Gly-Pro224. Peptides corresponding to these regions showed higher affinities (Kd approximately 0.3 microM) for both CyPA and cyclophilin B than the best peptide derived from the Gly-Pro90 site ( approximately 8 microM) and thus revealed new sequence motifs flanking Gly-Pro that are important for tight interaction of peptide ligands with cyclophilins. Between CyPA and an immature (unprocessed) form of p24, a Kd of approximately 8 microM was measured, which corresponded with the Kd of the best of the Gly-Pro90 peptides, indicating an association via this site. Processing of immature p24 by the viral protease, yielding mature p24, elicited a conformational change in its C-terminal domain that was signaled by the covalently attached fluorescence label acrylodan. Consequently, CyPA and cyclophilin B bound with much higher affinities ( approximately 0.6 and 0.25 microM) to the new, i.e. maturation-generated sites. Since this domain is essential for p24 oligomerization and capsid cone formation, CyPA bound to the new sites might impair the regularity of the capsid cone and thus facilitate in vivo core disassembly after host infection.  (+info)

Cystic fibrosis-associated mutations at arginine 347 alter the pore architecture of CFTR. Evidence for disruption of a salt bridge. (21/52898)

Arginine 347 in the sixth transmembrane domain of cystic fibrosis transmembrane conductance regulator (CFTR) is a site of four cystic fibrosis-associated mutations. To better understand the function of Arg-347 and to learn how mutations at this site disrupt channel activity, we mutated Arg-347 to Asp, Cys, Glu, His, Leu, or Lys and examined single-channel function. Every Arg-347 mutation examined, except R347K, had a destabilizing effect on the pore, causing the channel to flutter between two conductance states. Chloride flow through the larger conductance state was similar to that of wild-type CFTR, suggesting that the residue at position 347 does not interact directly with permeating anions. We hypothesized that Arg-347 stabilizes the channel through an electrostatic interaction with an anionic residue in another transmembrane domain. To test this, we mutated anionic residues (Asp-924, Asp-993, and Glu-1104) to Arg in the context of either R347E or R347D mutations. Interestingly, the D924R mutation complemented R347D, yielding a channel that behaved like wild-type CFTR. These data suggest that Arg-347 plays an important structural role in CFTR, at least in part by forming a salt bridge with Asp-924; cystic fibrosis-associated mutations disrupt this interaction.  (+info)

Conformational changes generated in GroEL during ATP hydrolysis as seen by time-resolved infrared spectroscopy. (22/52898)

Changes in the vibrational spectrum of the chaperonin GroEL in the presence of ADP and ATP have been followed as a function of time using rapid scan Fourier transform infrared spectroscopy. The interaction of nucleotides with GroEL was triggered by the photochemical release of the ligands from their corresponding biologically inactive precursors (caged nucleotides; P3-1-(2-nitro)phenylethyl nucleotide). Binding of either ADP or ATP induced the appearance of small differential signals in the amide I band of the protein, sensitive to protein secondary structure, suggesting a subtle and localized change in protein conformation. Moreover, conformational changes associated with ATP hydrolysis were detected that differed markedly from those observed upon nucleotide binding. Both, high-amplitude absorbance changes and difference bands attributable to modifications in the interaction between oppositely charged residues were observed during ATP hydrolysis. Once this process had occurred, the protein relaxed to an ADP-like conformation. Our results suggest that the secondary structure as well as salt bridges of GroEL are modified during ATP hydrolysis, as compared with the ATP and ADP bound protein states.  (+info)

Dengue virus NS3 serine protease. Crystal structure and insights into interaction of the active site with substrates by molecular modeling and structural analysis of mutational effects. (23/52898)

The mosquito-borne dengue viruses are widespread human pathogens causing dengue fever, dengue hemorrhagic fever, and dengue shock syndrome, placing 40% of the world's population at risk with no effective treatment. The viral genome is a positive strand RNA that encodes a single polyprotein precursor. Processing of the polyprotein precursor into mature proteins is carried out by the host signal peptidase and by NS3 serine protease, which requires NS2B as a cofactor. We report here the crystal structure of the NS3 serine protease domain at 2.1 A resolution. This structure of the protease combined with modeling of peptide substrates into the active site suggests identities of residues involved in substrate recognition as well as providing a structural basis for several mutational effects on enzyme activity. This structure will be useful for development of specific inhibitors as therapeutics against dengue and other flaviviral proteases.  (+info)

Mapping the functional domains of BRCA1. Interaction of the ring finger domains of BRCA1 and BARD1. (24/52898)

Breast cancer 1 (BRCA1) and BRCA1-associated RING domain 1 (BARD1) are multidomain proteins that interact in vivo via their N-terminal RING finger motif regions. To characterize functional aspects of the BRCA1/BARD1 interaction, we have defined the structural domains required for the interaction, as well as their oligomerization state, relative stability, and possible nucleic acid binding activity. We have found that the RING finger motifs do not themselves constitute stable structural domains but are instead part of larger domains comprising residues 1-109 of BRCA1 and residues 26-119 of BARD1. These domains exist as homodimers and preferentially form a stable heterodimer. Shorter BRCA1 RING finger constructs do not interact with BARD1 or with longer BRCA1 constructs, indicating that the heterodimeric and homodimer interactions are mediated by regions outside the canonical RING finger motif. Nucleic acid binding is a generally proposed function of RING finger domains. We show that neither the homodimers nor the heterodimer displays affinity for nucleic acids, indicating that the proposed roles of BRCA1 and BARD1 in DNA repair and/or transcriptional activation must be mediated either by other regions of the proteins or by additional cofactors.  (+info)