Loading...
(1/24808) Diphtheria toxin effects on human cells in tissue culture.

HeLa cells exposed to a single sublethal concentration of diphtheria toxin were found to have diminished sensitivity when subsequently reexposed to the toxin. Three cells strains exhibiting toxin resistance were developed. In the cells that had previously been exposed to toxin at 0.015 mug/ml, 50% inhibition of protein synthesis required a toxin concentration of 0.3 mug/ml, which is more than 10 times that required in normal HeLa cells. There appears to be a threshold level of diphtheria toxin action. Concentrations of toxin greater than that required for 50% inhibition of protein synthesis (0.01 mug/ml) are associated with cytotoxicity, whereas those below this concentration may not be lethal. Several established human cell lines of both normal and neoplastic origin were tested for their sensitivity to the effects of the toxin. No special sensitivity was observed with the cells of tumor origin. Fifty % inhibition of protein synthesis of HeLa cells was achieved with diphtheria toxin (0.01 mug/ml) as compared to the normal human cell lines tested (0.03 and 0.5 mug/ml) and a cell line derived from a human pancreatic adenocarcinoma (0.2 mug/ml). A human breast carcinoma cell line showed a maximum of 45% inhibition of protein synthesis. This required a diphtheria toxin concentration of 5 mug/ml. These results suggest that different human cell lines show wide variation in their sensitivity to the toxin.  (+info)

(2/24808) Structural and functional changes in acute liver injury.

Carbon tetrachloride produces liver cell injury in a variety of animal species. The first structurally recognizable changes occur in the endoplasmic reticulum, with alteration in ribosome-membrane interactions. Later there is an increase in intracellular fat, and the formation of tangled nets of the ergastoplasm. At no time are there changes in mitochondria or single membrane limited bodies in cells with intact plasmalemma, although a relative increase in cell sap may appear. In dead cells (those with plasmalemma discontinuties) crystalline deposits of calcium phosphatase may be noted. Functional changes are related to the endoplasmic reticulum and the plasma membrane. An early decrease in protein synthesis takes place; an accumulation of neutral lipid is related to this change. Later alterations in the ergastoplasmic functions (e.g., mixed function oxidation) occurs. Carbon tetrachloride is not the active agent; rather, a product of its metabolism, probably the CC1, free radical, is. The mechanisms of injury include macromolecular adduction and peroxide propagation. A third possibility includes a cascade effect with the production of secondary and tertiary products, also toxic in nature, with the ability to produce more widespread damage to intracellular structures.  (+info)

(3/24808) Apontic binds the translational repressor Bruno and is implicated in regulation of oskar mRNA translation.

The product of the oskar gene directs posterior patterning in the Drosophila oocyte, where it must be deployed specifically at the posterior pole. Proper expression relies on the coordinated localization and translational control of the oskar mRNA. Translational repression prior to localization of the transcript is mediated, in part, by the Bruno protein, which binds to discrete sites in the 3' untranslated region of the oskar mRNA. To begin to understand how Bruno acts in translational repression, we performed a yeast two-hybrid screen to identify Bruno-interacting proteins. One interactor, described here, is the product of the apontic gene. Coimmunoprecipitation experiments lend biochemical support to the idea that Bruno and Apontic proteins physically interact in Drosophila. Genetic experiments using mutants defective in apontic and bruno reveal a functional interaction between these genes. Given this interaction, Apontic is likely to act together with Bruno in translational repression of oskar mRNA. Interestingly, Apontic, like Bruno, is an RNA-binding protein and specifically binds certain regions of the oskar mRNA 3' untranslated region.  (+info)

(4/24808) A Drosophila doublesex-related gene, terra, is involved in somitogenesis in vertebrates.

The Drosophila doublesex (dsx) gene encodes a transcription factor that mediates sex determination. We describe the characterization of a novel zebrafish zinc-finger gene, terra, which contains a DNA binding domain similar to that of the Drosophila dsx gene. However, unlike dsx, terra is transiently expressed in the presomitic mesoderm and newly formed somites. Expression of terra in presomitic mesoderm is restricted to cells that lack expression of MyoD. In vivo, terra expression is reduced by hedgehog but enhanced by BMP signals. Overexpression of terra induces rapid apoptosis both in vitro and in vivo, suggesting that a tight regulation of terra expression is required during embryogenesis. Terra has both human and mouse homologs and is specifically expressed in mouse somites. Taken together, our findings suggest that terra is a highly conserved protein that plays specific roles in early somitogenesis of vertebrates.  (+info)

(5/24808) High-throughput screening of small molecules in miniaturized mammalian cell-based assays involving post-translational modifications.

BACKGROUND: Fully adapting a forward genetic approach to mammalian systems requires efficient methods to alter systematically gene products without prior knowledge of gene sequences, while allowing for the subsequent characterization of these alterations. Ideally, these methods would also allow function to be altered in a temporally controlled manner. RESULTS: We report the development of a miniaturized cell-based assay format that enables a genetic-like approach to understanding cellular pathways in mammalian systems using small molecules, rather than mutations, as the source of gene-product alterations. This whole-cell immunodetection assay can sensitively detect changes in specific cellular macromolecules in high-density arrays of mammalian cells. Furthermore, it is compatible with screening large numbers of small molecules in nanoliter to microliter culture volumes. We refer to this assay format as a 'cytoblot', and demonstrate the use of cytoblotting to monitor biosynthetic processes such as DNA synthesis, and post-translational processes such as acetylation and phosphorylation. Finally, we demonstrate the applicability of these assays to natural-product screening through the identification of marine sponge extracts exhibiting genotype-specific inhibition of 5-bromodeoxyuridine incorporation and suppression of the anti-proliferative effect of rapamycin. CONCLUSIONS: We show that cytoblots can be used for high-throughput screening of small molecules in cell-based assays. Together with small-molecule libraries, the cytoblot assay can be used to perform chemical genetic screens analogous to those used in classical genetics and thus should be applicable to understanding a wide variety of cellular processes, especially those involving post-transitional modifications.  (+info)

(6/24808) Telomerase reverse transcriptase gene is a direct target of c-Myc but is not functionally equivalent in cellular transformation.

The telomerase reverse transcriptase component (TERT) is not expressed in most primary somatic human cells and tissues, but is upregulated in the majority of immortalized cell lines and tumors. Here, we identify the c-Myc transcription factor as a direct mediator of telomerase activation in primary human fibroblasts through its ability to specifically induce TERT gene expression. Through the use of a hormone inducible form of c-Myc (c-Myc-ER), we demonstrate that Myc-induced activation of the hTERT promoter requires an evolutionarily conserved E-box and that c-Myc-ER-induced accumulation of hTERT mRNA takes place in the absence of de novo protein synthesis. These findings demonstrate that the TERT gene is a direct transcriptional target of c-Myc. Since telomerase activation frequently correlates with immortalization and telomerase functions to stabilize telomers in cycling cells, we tested whether Myc-induced activation of TERT gene expression represents an important mechanism through which c-Myc acts to immortalize cells. Employing the rat embryo fibroblast cooperation assay, we show that TERT is unable to substitute for c-Myc in the transformation of primary rodent fibroblasts, suggesting that the transforming activities of Myc extend beyond its ability to activate TERT gene expression and hence telomerase activity.  (+info)

(7/24808) C/EBPalpha regulates generation of C/EBPbeta isoforms through activation of specific proteolytic cleavage.

C/EBPalpha and C/EBPbeta are intronless genes that can produce several N-terminally truncated isoforms through the process of alternative translation initiation at downstream AUG codons. C/EBPbeta has been reported to produce four isoforms: full-length 38-kDa C/EBPbeta, 35-kDa LAP (liver-enriched transcriptional activator protein), 21-kDa LIP (liver-enriched transcriptional inhibitory protein), and a 14-kDa isoform. In this report, we investigated the mechanisms by which C/EBPbeta isoforms are generated in the liver and in cultured cells. Using an in vitro translation system, we found that LIP can be generated by two mechanisms: alternative translation and a novel mechanism-specific proteolytic cleavage of full-length C/EBPbeta. Studies of mice in which the C/EBPalpha gene had been deleted (C/EBPalpha-/-) showed that the regulation of C/EBPbeta proteolysis is dependent on C/EBPalpha. The induction of C/EBPalpha in cultured cells leads to induced cleavage of C/EBPbeta to generate the LIP isoform. We characterized the cleavage activity in mouse liver extracts and found that the proteolytic cleavage activity is specific to prenatal and newborn livers, is sensitive to chymostatin, and is completely abolished in C/EBPalpha-/- animals. The lack of cleavage activity in the livers of C/EBPalpha-/- mice correlates with the decreased levels of LIP in the livers of these animals. Analysis of LIP production during liver regeneration showed that, in this system, the transient induction of LIP is dependent on the third AUG codon and most likely involves translational control. We propose that there are two mechanisms by which C/EBPbeta isoforms might be generated in the liver and in cultured cells: one that is determined by translation and a second that involves C/EBPalpha-dependent, specific proteolytic cleavage of full-length C/EBPbeta. The latter mechanism implicates C/EBPalpha in the regulation of posttranslational generation of the dominant negative C/EBPbeta isoform, LIP.  (+info)

(8/24808) Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo.

Eukaryotic translation initiation factor 4E (eIF4E) binds to the mRNA 5' cap and brings the mRNA into a complex with other protein synthesis initiation factors and ribosomes. The activity of mammalian eIF4E is important for the translation of capped mRNAs and is thought to be regulated by two mechanisms. First, eIF4E is sequestered by binding proteins, such as 4EBP1, in quiescent cells. Mitogens induce the release of eIF4E by stimulating the phosphorylation of 4EBP1. Second, mitogens and stresses induce the phosphorylation of eIF4E at Ser 209, increasing the affinity of eIF4E for capped mRNA and for an associated scaffolding protein, eIF4G. We previously showed that a mitogen- and stress-activated kinase, Mnk1, phosphorylates eIF4E in vitro at the physiological site. Here we show that Mnk1 regulates eIF4E phosphorylation in vivo. Mnk1 binds directly to eIF4G and copurifies with eIF4G and eIF4E. We identified activating phosphorylation sites in Mnk1 and developed dominant-negative and activated mutants. Expression of dominant-negative Mnk1 reduces mitogen-induced eIF4E phosphorylation, while expression of activated Mnk1 increases basal eIF4E phosphorylation. Activated mutant Mnk1 also induces extensive phosphorylation of eIF4E in cells overexpressing 4EBP1. This suggests that phosphorylation of eIF4E is catalyzed by Mnk1 or a very similar kinase in cells and is independent of other mitogenic signals that release eIF4E from 4EBP1.  (+info)