C-terminal Src kinase associates with ligand-stimulated insulin-like growth factor-I receptor. (49/96713)

Increased expression of the insulin-like growth factor-I receptor (IGF-IR) protein-tyrosine kinase occurs in several kinds of cancer and induces neoplastic transformation in fibroblast cell lines. The transformed phenotype can be reversed by interfering with the function of the IGF-IR. The IGF-IR is required for transformation by a number of viral and cellular oncoproteins, including SV40 large T antigen, Ras, Raf, and Src. The IGF-IR is a substrate for Src in vitro and is phosphorylated in v-Src-transformed cells. We observed that the IGF-IR and IR associated with the C-terminal Src kinase (CSK) following ligand stimulation. We found that the SH2 domain of CSK binds to the tyrosine-phosphorylated form of IGF-IR and IR. We determined the tyrosine residues in the IGF-IR and in the IR responsible for this interaction. We also observed that fibroblasts stimulated with IGF-I or insulin showed a rapid and transient decrease in c-Src tyrosine kinase activity. The results suggest that c-Src and CSK are involved in IGF-IR and IR signaling and that the interaction of CSK with the IGF-IR may play a role in the decrease in c-Src activity following IGF-I stimulation.  (+info)

Recruitment of the retinoblastoma protein to c-Jun enhances transcription activity mediated through the AP-1 binding site. (50/96713)

The retinoblastoma susceptibility gene product (RB) is a transcriptional modulator. One of the targets for this modulator effect is the AP-1 binding site within the c-jun and collagenase promoters. The physical interactions between RB and c-Jun were demonstrated by co-immunoprecipitation of these two proteins using anti-c-Jun or anti-RB antisera, glutathione S-transferase affinity matrix binding assays in vitro, and electrophoretic mobility shift assays. The C-terminal site of the leucine zipper of c-Jun mediated the interaction with RB. Although the B-pocket domain of RB alone bound to c-Jun, a second c-Jun binding site in the RB was also suggested. Mammalian two-hybrid-based assay provided corroborative evidence that transactivation of gene expression by RB required the C-terminal region of c-Jun. We conclude that RB enhances transcription activity mediated through the AP-1 binding site. Adenovirus E1A or human papillomavirus E7 inhibits RB-mediated transcription activity. These data reveal that the interactions between these two distinct classes of oncoproteins RB and c-Jun may be involved in controlling cell growth and differentiation mediated by transcriptional regulation.  (+info)

A novel ubiquitously expressed alpha-latrotoxin receptor is a member of the CIRL family of G-protein-coupled receptors. (51/96713)

Poisoning with alpha-latrotoxin, a neurotoxic protein from black widow spider venom, results in a robust increase of spontaneous synaptic transmission and subsequent degeneration of affected nerve terminals. The neurotoxic action of alpha-latrotoxin involves extracellular binding to its high affinity receptors as a first step. One of these proteins, CIRL, is a neuronal G-protein-coupled receptor implicated in the regulation of secretion. We now demonstrate that CIRL has two close homologs with a similar domain structure and high degree of overall identity. These novel receptors, which we propose to name CIRL-2 and CIRL-3, together with CIRL (CIRL-1) belong to a recently identified subfamily of large orphan receptors with structural features typical of both G-protein-coupled receptors and cell adhesion proteins. Northern blotting experiments indicate that CIRL-2 is expressed ubiquitously with highest concentrations found in placenta, kidney, spleen, ovary, heart, and lung, whereas CIRL-3 is expressed predominantly in brain similarly to CIRL-1. It appears that CIRL-2 can also bind alpha-latrotoxin, although its affinity to the toxin is about 14 times less than that of CIRL-1. When overexpressed in chromaffin cells, CIRL-2 increases their sensitivity to alpha-latrotoxin stimulation but also inhibits Ca2+-regulated secretion. Thus, CIRL-2 is a functionally competent receptor of alpha-latrotoxin. Our findings suggest that although the nervous system is the primary target of low doses of alpha-latrotoxin, cells of other tissues are also susceptible to the toxic effects of alpha-latrotoxin because of the presence of CIRL-2, a low affinity receptor of the toxin.  (+info)

Conformational changes generated in GroEL during ATP hydrolysis as seen by time-resolved infrared spectroscopy. (52/96713)

Changes in the vibrational spectrum of the chaperonin GroEL in the presence of ADP and ATP have been followed as a function of time using rapid scan Fourier transform infrared spectroscopy. The interaction of nucleotides with GroEL was triggered by the photochemical release of the ligands from their corresponding biologically inactive precursors (caged nucleotides; P3-1-(2-nitro)phenylethyl nucleotide). Binding of either ADP or ATP induced the appearance of small differential signals in the amide I band of the protein, sensitive to protein secondary structure, suggesting a subtle and localized change in protein conformation. Moreover, conformational changes associated with ATP hydrolysis were detected that differed markedly from those observed upon nucleotide binding. Both, high-amplitude absorbance changes and difference bands attributable to modifications in the interaction between oppositely charged residues were observed during ATP hydrolysis. Once this process had occurred, the protein relaxed to an ADP-like conformation. Our results suggest that the secondary structure as well as salt bridges of GroEL are modified during ATP hydrolysis, as compared with the ATP and ADP bound protein states.  (+info)

Identification of Grb4/Nckbeta, a src homology 2 and 3 domain-containing adapter protein having similar binding and biological properties to Nck. (53/96713)

Adapter proteins made up of Src homology (SH) domains mediate multiple cellular signaling events initiated by receptor protein tyrosine kinases. Here we report that Grb4 is an adapter protein closely related to but distinct from Nck that is made up of three SH3 domains and one SH2 domain. Northern analysis indicated that both genes are expressed in multiple tissues. Both Nck and Grb4 proteins could associate with receptor tyrosine kinases and the SH3-binding proteins PAK, Sos1, and PRK2, and they synergized with v-Abl and Sos to induce gene expression via the transcription factor Elk-1. Although neither protein was transforming on its own, both Nck and Grb4 cooperated with v-Abl to transform NIH 3T3 cells and influenced the morphology and anchorage-dependent growth of wild type Ras-transformed cells. Nck and Grb4 therefore appear to be functionally redundant.  (+info)

Identification of low density lipoprotein receptor-related protein-2/megalin as an endocytic receptor for seminal vesicle secretory protein II. (54/96713)

The low density lipoprotein receptor-related protein-2/megalin (LRP-2) is an endocytic receptor that is expressed on the apical surfaces of epithelial cells lining specific regions of the male and female reproductive tracts. In the present study, immunohistochemical staining revealed that LRP-2 is also expressed by epithelial cells lining the ductal region and the ampulla of the rat seminal vesicle. To identify LRP-2 ligands in the seminal vesicle, we probed seminal vesicle fluid with 125I-labeled LRP-2 in a gel-blot overlay assay. A 100-kDa protein (under non-reducing conditions) was found to bind the radiolabeled receptor. The protein was isolated and subjected to protease digestion, and the proteolytic fragments were subjected to mass spectroscopic sequence analysis. As a result, the 100-kDa protein was identified as the seminal vesicle secretory protein II (SVS-II), a major constituent of the seminal coagulum. Using purified preparations of SVS-II and LRP-2, solid-phase binding assays were used to show that the SVS-II bound to the receptor with high affinity (Kd = 5.6 nM). The binding of SVS-II to LRP-2 was inhibited using a known antagonist of LRP-2 function, the 39-kDa receptor-associated protein RAP. Using a series of recombinant subfragments of SVS-II, the LRP-2 binding site was mapped to a stretch of repeated 13-residue modules located in the central portion of the SVS-II polypeptide. To evaluate the ability of LRP-2 to mediate 125I-SVS-II endocytosis and lysosomal degradation, ligand clearance assays were performed using differentiated mouse F9 cells, which express high levels of LRP-2. Radiolabeled SVS-II was internalized and degraded by the cells, and both processes were inhibited by antibodies to LRP-2 or by RAP. The results indicate that LRP-2 binds SVS-II and can mediate its endocytosis leading to lysosomal degradation.  (+info)

Vascular endothelial growth factor (VEGF) receptor II-derived peptides inhibit VEGF. (55/96713)

Vascular endothelial growth factor (VEGF) directly stimulates endothelial cell proliferation and migration via tyrosine kinase receptors of the split kinase domain family. It mediates vascular growth and angiogenesis in the embryo but also in the adult in a variety of physiological and pathological conditions. The potential binding site of VEGF with its receptor was identified using cellulose-bound overlapping peptides of the extracytosolic part of the human vascular endothelial growth factor receptor II (VEGFR II). Thus, a peptide originating from the third globular domain of the VEGFR II comprising residues 247RTELNVGIDFNWEYP261 was revealed as contiguous sequence stretch, which bound 125I-VEGF165. A systematic replacement with L-amino acids within the peptide representing the putative VEGF-binding site on VEGFR II indicates Asp255 as the hydrophilic key residue for binding. The dimerized peptide (RTELNVGIDFNWEYPAS)2K inhibits VEGF165 binding with an IC50 of 0.5 microM on extracellular VEGFR II fragments and 30 microM on human umbilical vein cells. VEGF165-stimulated autophosphorylation of VEGFR II as well as proliferation and migration of microvascular endothelial cells was inhibited by the monomeric peptide RTELNVGIDFNWEYPASK at a half-maximal concentration of 3-10, 0.1, and 0.1 microM, respectively. We conclude that transduction of the VEGF165 signal can be interrupted with a peptide derived from the third Ig-like domain of VEGFR II by blockade of VEGF165 binding to its receptor.  (+info)

SNARE interactions are not selective. Implications for membrane fusion specificity. (56/96713)

The SNARE hypothesis proposes that membrane trafficking specificity is mediated by preferential high affinity interactions between particular v (vesicle membrane)- and t (target membrane)-SNARE combinations. The specificity of interactions among a diverse set of SNAREs, however, is unknown. We have tested the SNARE hypothesis by analyzing potential SNARE complexes between five proteins of the vesicle-associated membrane protein (VAMP) family, three members of the synaptosome-associated protein-25 (SNAP-25) family and three members of the syntaxin family. All of the 21 combinations of SNAREs tested formed stable complexes. Sixteen were resistant to SDS denaturation, and most complexes thermally denatured between 70 and 90 degreesC. These results suggest that the specificity of membrane fusion is not encoded by the interactions between SNAREs.  (+info)