Evaluation of signals activating ubiquitin-proteasome proteolysis in a model of muscle wasting. (41/7628)

The ubiquitin-proteasome proteolytic system is stimulated in conditions causing muscle atrophy. Signals initiating this response in these conditions are unknown, although glucocorticoids are required but insufficient to stimulate muscle proteolysis in starvation, acidosis, and sepsis. To identify signals that activate this system, we studied acutely diabetic rats that had metabolic acidosis and increased corticosterone production. Protein degradation was increased 52% (P < 0.05), and mRNA levels encoding ubiquitin-proteasome system components, including the ubiquitin-conjugating enzyme E214k, were higher (transcription of the ubiquitin and proteasome subunit C3 genes in muscle was increased by nuclear run-off assay). In diabetic rats, prevention of acidemia by oral NaHCO3 did not eliminate muscle proteolysis. Adrenalectomy blocked accelerated proteolysis and the rise in pathway mRNAs; both responses were restored by administration of a physiological dose of glucocorticoids to adrenalectomized, diabetic rats. Finally, treating diabetic rats with insulin for >/=24 h reversed muscle proteolysis and returned pathway mRNAs to control levels. Thus acidification is not necessary for these responses, but glucocorticoids and a low insulin level in tandem activate the ubiquitin-proteasome proteolytic system.  (+info)

Transient nuclear factor kappaB (NF-kappaB) activation stimulated by interleukin-1beta may be partly dependent on proteasome activity, but not phosphorylation and ubiquitination of the IkappaBalpha molecule, in C6 glioma cells. Regulation of NF-kappaB linked to chemokine production. (42/7628)

We previously reported that several stresses can induce cytokine-induced neutrophil chemoattractant expression in a nuclear factor kappaB (NF-kappaB)-dependent manner. In this study, we focused further on the regulation of NF-kappaB. The activation of NF-kappaB and the subsequent cytokine-induced neutrophil chemoattractant induction in response to interleukin-1beta (IL-1beta) were inhibited by proteasome inhibitors, MG132 and proteasome inhibitor I. Translocation of NF-kappaB into nuclei occurs by the phosphorylation, multi-ubiquitination, and degradation of IkappaBalpha, a regulatory protein of NF-kappaB. Nascent IkappaBalpha began to degrade 5 min after treatment with IL-1beta and disappeared completely after 15 min. However, IkappaBalpha returned to basal levels after 45-60 min. Interestingly, resynthesized IkappaBalpha was already phosphorylated at Ser-32. These results suggest that 1) the upstream signals are still activated, although the translocation of NF-kappaB peaks at 15 min; and 2) the regulated protein(s) acts downstream of IkappaBalpha phosphorylation. Western blotting showed that the resynthesized and phosphorylated IkappaB molecules were also upward-shifted by multi-ubiquitination in response to IL-1beta treatment. On the other hand, ATP-dependent Leu-Leu-Val-Tyr cleaving activity transiently increased, peaked at 15 min, and then decreased to basal levels at 60 min. Furthermore, the cytosolic fraction that was stimulated by IL-1beta for 15 min, but not for 0 and 60 min, could degrade phosphorylated and multi-ubiquitinated IkappaBalpha. These results indicate that the transient translocation of NF-kappaB in response to IL-1beta may be partly dependent on transient proteasome activation.  (+info)

Proteasome activity is required for anthrax lethal toxin to kill macrophages. (43/7628)

Anthrax lethal toxin (LeTx), consisting of protective antigen (PA) and lethal factor (LF), rapidly kills primary mouse macrophages and macrophage-like cell lines such as RAW 264.7. LF is translocated by PA into the cytosol of target cells, where it acts as a metalloprotease to cleave mitogen-activated protein kinase kinase 1 (MEK1) and possibly other proteins. In this study, we show that proteasome inhibitors such as acetyl-Leu-Leu-norleucinal, MG132, and lactacystin efficiently block LeTx cytotoxicity, whereas other protease inhibitors do not. The inhibitor concentrations that block LF cytotoxicity are similar to those that inhibit the proteasome-dependent IkappaB-alpha degradation induced by lipopolysaccharide. The inhibitors did not interfere with the proteolytic cleavage of MEK1 in LeTx-treated cells, indicating that they do not directly block the proteolytic activity of LF. However, the proteasome inhibitors did prevent ATP depletion, an early effect of LeTx. No overall activation of the proteasome by LeTx was detected, as shown by the cleavage of fluorogenic substrates of the proteasome. All of these results suggest that the proteasome mediates a toxic process initiated by LF in the cell cytosol. This process probably involves degradation of unidentified molecules that are essential for macrophage homeostasis. Moreover, this proteasome-dependent process is an early step in LeTx intoxication, but it is downstream of the cleavage by LF of MEK1 or other putative substrates.  (+info)

Ubiquitination of RNA polymerase II large subunit signaled by phosphorylation of carboxyl-terminal domain. (44/7628)

A sensitive assay using biotinylated ubiquitin revealed extensive ubiquitination of the large subunit of RNA polymerase II during incubations of transcription reactions in vitro. Phosphorylation of the repetitive carboxyl-terminal domain of the large subunit was a signal for ubiquitination. Specific inhibitors of cyclin-dependent kinase (cdk)-type kinases suppress the ubiquitination reaction. These kinases are components of transcription factors and have been shown to phosphorylate the carboxyl-terminal domain. In both regulation of transcription and DNA repair, phosphorylation of the repetitive carboxyl-terminal domain by kinases might signal degradation of the polymerase.  (+info)

Poly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones. (45/7628)

The 20S proteasome has been shown to be largely responsible for the degradation of oxidatively modified proteins in the cytoplasm. Nuclear proteins are also subject to oxidation, and the nucleus of mammalian cells contains proteasome. In human beings, tumor cells frequently are subjected to oxidation as a consequence of antitumor chemotherapy, and K562 human myelogenous leukemia cells have a higher nuclear proteasome activity than do nonmalignant cells. Adaptation to oxidative stress appears to be one element in the development of long-term resistance to many chemotherapeutic drugs and the mechanisms of inducible tumor resistance to oxidation are of obvious importance. After hydrogen peroxide treatment of K562 cells, degradation of the model proteasome peptide substrate suc-LLVY-MCA and degradation of oxidized histones in nuclei increases significantly within minutes. Both increased proteolytic susceptibility of the histone substrates (caused by modification by oxidation) and activation of the proteasome enzyme complex occur independently during oxidative stress. This rapid up-regulation of 20S proteasome activity is accompanied by, and depends on, poly-ADP ribosylation of the proteasome, as shown by inhibitor experiments, 14C-ADP ribose incorporation assays, immunoblotting, in vitro reconstitution experiments, and immunoprecipitation of (activated) proteasome with anti-poly-ADP ribose polymerase antibodies. The poly-ADP ribosylation-mediated activated nuclear 20S proteasome is able to remove oxidatively damaged histones more efficiently and therefore is proposed as an oxidant-stimulatable defense or repair system of the nucleus in K562 leukemia cells.  (+info)

Interaction between RGS7 and polycystin. (46/7628)

Regulators of G protein signaling (RGS) proteins accelerate the intrinsic GTPase activity of certain Galpha subunits and thereby modulate a number of G protein-dependent signaling cascades. Currently, little is known about the regulation of RGS proteins themselves. We identified a short-lived RGS protein, RGS7, that is rapidly degraded through the proteasome pathway. The degradation of RGS7 is inhibited by interaction with a C-terminal domain of polycystin, the protein encoded by PKD1, a gene involved in autosomal-dominant polycystic kidney disease. Furthermore, membranous expression of C-terminal polycystin relocalized RGS7. Our results indicate that rapid degradation and interaction with integral membrane proteins are potential means of regulating RGS proteins.  (+info)

Induction of the Tat-binding protein 1 gene accompanies the disabling of oncogenic erbB receptor tyrosine kinases. (47/7628)

Conversion of a malignant phenotype into a more normal one can be accomplished either by down-regulation of erbB family surface receptors or by creating inactive erbB heterodimers on the cell surface. In this report, we report the identification and cloning of differentially expressed genes from antibody-treated vs. untreated fibroblasts transformed by oncogenic p185(neu). We repeatedly isolated a 325-bp cDNA fragment that, as determined by Northern analysis, was expressed at higher levels in anti-p185(neu)-treated tumor cells but not in cells expressing internalization defective p185(neu) receptors. This cDNA fragment was identical in amino acid sequence to the recently cloned mouse Tat binding protein-1 (mTBP1), which has 98.4% homology to the HIV tat-binding protein-1 (TBP1). TBP1 mRNA levels were found to be elevated on inhibition of the oncogenic phenotype of transformed cells expressing erbB family receptors. TBP1 overexpression diminished cell proliferation, reduced the ability of the parental cells to form colonies in vitro, and almost completely inhibited transforming efficiency in athymic mice when stably expressed in human tumor cells containing erbB family receptors. Collectively, these results suggest that the attenuation of erbB receptor signaling seems to be associated with activation/induction or recovery of a functional tumor suppressor-like gene, TBP1. Disabling erbB tyrosine kinases by antibodies or by trans-inhibition represents an initial step in triggering a TBP1 pathway.  (+info)

The ubiquitin-proteasome pathway and serine kinase activity modulate adenomatous polyposis coli protein-mediated regulation of beta-catenin-lymphocyte enhancer-binding factor signaling. (48/7628)

The tumor suppressor function of the adenomatous polyposis coli protein (APC) depends, in part, on its ability to bind and regulate the multifunctional protein, beta-catenin. beta-Catenin binds the high mobility group box transcription factors, lymphocyte enhancer-binding factor (LEF) and T-cell factor, to directly regulate gene transcription. Using LEF reporter assays we find that APC-mediated down-regulation of beta-catenin-LEF signaling is reversed by proteasomal inhibitors in a dose-dependent manner. APC down-regulates signaling induced by wild type beta-catenin but not by the non-ubiquitinatable S37A mutant, beta-catenin. Bisindoylmaleimide-type protein kinase C inhibitors, which prevent beta-catenin ubiquitination, decrease the ability of APC to down-regulate beta-catenin-LEF signaling. All these effects on LEF signaling are paralleled by changes in beta-catenin protein levels. Lithium, an inhibitor of glycogen synthase kinase-3beta, does not alter the ability of APC to down-regulate beta-catenin protein and beta-catenin-LEF signaling in the colon cancer cells that were tested. These results point to a role for beta-catenin ubiquitination, proteasomal degradation, and potentially a serine kinase other than glycogen synthase kinase-3beta in the tumor-suppressive actions of APC.  (+info)