Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. (25/231)

Persistent organic pollutants, such as polychlorinated biphenyls (PCBs), are a global problem. We demonstrate enhanced depletion of PCBs using root-associated microbes, which can use plant secondary metabolites, such as phenylpropanoids. Using a "rhizosphere metabolomics" approach, we show that phenylpropanoids constitute 84% of the secondary metabolites exuded from Arabidopsis roots. Phenylpropanoid-utilizing microbes are more competitive and are able to grow at least 100-fold better than their auxotrophic mutants on roots of plants that are able to synthesize or overproduce phenylpropanoids, such as flavonoids. Better colonization of the phenylpropanoid-utilizing strain in a gnotobiotic system on the roots of flavonoid-producing plants leads to almost 90% removal of PCBs in a 28-d period. Our work complements previous approaches to engineer soil microbial populations based on opines produced by transgenic plants and used by microbes carrying opine metabolism genes. The current approach based on plant natural products can be applied to contaminated soils with pre-existing vegetation. This strategy is also likely to be applicable to improving the competitive abilities of biocontrol and biofertilization strains.  (+info)

Regio- and enantiospecific rhodium-catalyzed arylation of unsymmetrical fluorinated acyclic allylic carbonates: inversion of absolute configuration. (26/231)

The transition metal-catalyzed allylic substitution with unstabilized carbon nucleophiles represents an important cross-coupling reaction for the construction of ternary carbon stereogenic centers. We have developed a new regio- and enantiospecific rhodium-catalyzed allylic alkylation of acyclic unsymmetrical chiral nonracemic allylic alcohol derivatives with aryl zinc bromides. This study demonstrates that the hydrotris(pyrazolyl)borate rhodium catalyst and zinc(II) halide salt are crucial for efficiency, while the addition of lithium bromide to the catalyst is necessary for obtaining optimal regiospecificity. The stereochemical course of this reaction was established through the synthesis of (S)-ibuprofen, which demonstrated that the alkylation proceeds with net inversion of absolute configuration consistent with direct addition of the nucleophile to the metal center followed by reductive elimination.  (+info)

Dissolution of beta2-microglobulin amyloid fibrils by dimethylsulfoxide. (27/231)

Increasing numbers of proteins have been found to aggregate into insoluble fibers, collectively referred to as amyloid fibrils. To address the conformational stability of amyloid fibrils, we studied the effects of dimethylsulfoxide (DMSO), 2,2,2-trifluoroethanol (TFE), and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) on beta(2)-microglobulin amyloid fibrils by circular dichroism, thioflavin T fluorescence, light scattering, and electron microscopy. When measured by circular dichroism and thioflavin T fluorescence, HFIP, and TFE dissolved the fibrils, producing predominantly helical conformations. However, these alcohols did not dissolve the amyloid fibrils completely as monitored by light scattering and electron microscopy. On the other hand, DMSO completely dissolved the amyloid fibrils although a high concentration [i.e., 80% (v/v)] was required. These results are consistent with the important role of hydrogen bonds in stabilizing amyloid fibrils.  (+info)

Ultrasonic studies of alcohol-induced transconformation in beta-lactoglobulin: the intermediate state. (28/231)

In mixed alcohol-water solvents, bovine beta-lactoglobulin undergoes a cooperative transition from beta-sheet to a high alpha-helix content conformer. We report here the characterization of beta-lactoglobulin by compressibility and spectroscopy measurements during this transconformation. Both the volume and compressibility increase as a function of alcohol concentration, up to maximal values which depend on the chemical nature of the three alcohols used: hexafluoroisopropanol, trifluoroethanol, and isopropanol. The order of effectiveness of alcohols in inducing the compressibility transition is identical to that previously reported for circular dichroism and thus independent of the observation technique. The highly cooperative sigmoidal curves found by compressibility determination match closely those obtained by circular dichroism at 222 nm, indicating a correlation between the two phenomena measured by the two different techniques. The presence of an equilibrium intermediate form was shown by the interaction of beta-lactoglobulin with 8-anilino-1-naphthalene sulfonic acid, a probe widely used to detect molten-globule states of proteins. It was correlated with the plateau region of the volume curves and with the inflexion points of the sigmoidal compressibility curves. Ultrasound characterization of proteins can be carried out in optically transparent or nontransparent media.  (+info)

15-deoxy prostaglandin J2 enhances allyl alcohol-induced toxicity in rat hepatocytes. (29/231)

Allyl alcohol causes hepatotoxicity that is potentiated by small doses of bacterial lipopolysaccharide (LPS) through a cyclooxygenase-2 (COX-2)-dependent mechanism. The COX-2 product prostaglandin D(2) (PGD(2)) increases hepatocyte killing by allyl alcohol in vitro. In the present study the ability of the nonenzymatic product of PGD(2), 15-deoxy-Delta12,14-prostaglandin J(2) (15d-PGJ(2)), to increase the cytotoxicity of allyl alcohol was evaluated. In a concentration-dependent manner, 15d-PGJ(2) significantly augmented cell death caused by allyl alcohol in isolated rat hepatocytes. 15d-PGJ(2) also increased the cytotoxicity of acrolein, the active metabolite of allyl alcohol. An agonist for the PGD(2) receptor neither reproduced the increase in allyl alcohol-mediated cytotoxicity nor altered the response to 15d-PGJ(2). Similarly, these responses were not affected by either an agonist or an antagonist for the peroxisome proliferator-activated receptor-gamma. The enhancement by 15d-PGJ(2) of allyl alcohol-mediated cell killing was unaffected by augmentation or inhibition of cAMP. Protein synthesis was markedly decreased by 15d-PGJ(2), but inhibition of protein synthesis alone with cycloheximide did not increase allyl alcohol-mediated cell killing. Allyl alcohol at subtoxic concentrations increased translocation of nuclear factor kappa B (NF-kappaB), whereas at cytotoxic concentrations no translocation occurred. 15d-PGJ(2) inhibited translocation of NF-kappaB from the cytosol to the nucleus both in the presence and absence of allyl alcohol. Like 15d-PGJ(2), MG132, an inhibitor of NF-kappaB activation, enhanced allyl alcohol-induced hepatocyte death. Together these results indicate that 15d-PGJ(2) augments hepatocyte killing by allyl alcohol, and the mechanism may be related to the inhibition of NF-kappaB activation.  (+info)

Human amylin oligomer growth and fibril elongation define two distinct phases in amyloid formation. (30/231)

Human amylin (hA), a 37-amino-acid polypeptide, is one of a number of peptides with the ability to form amyloid fibrils and cause disease. It is the main constituent of the pancreatic amyloid deposits associated with type 2 diabetes. Increasing interest in early assembly intermediates rather than the mature fibrils as the cytotoxic agent has led to this study in which the smallest hA oligomers have been captured by atomic force microscopy. These are 2.3 +/- 1.9 nm in height, 23 +/- 14 nm in length, and consist of an estimated 16 hA molecules. Oligomers first grow to a height of about 6 nm before they begin to significantly elongate into fibrils. Congo red inhibits elongation but not the growth in height of hA oligomers. Two distinct phases have thus been identified in hA fibrillogenesis: lateral growth of oligomers followed by longitudinal growth into mature fibrils. These observations suggest that mature fibrils are assembled directly via longitudinal growth of full-width oligomers, making assembly by lateral association of protofibrils appear less likely.  (+info)

Limited infection without evidence of replication by porcine endogenous retrovirus in guinea pigs. (31/231)

Porcine endogenous retrovirus (PERV) may potentially be transmitted through porcine xenotransplantation products administered to humans. This study examined the feasibility of using guinea pigs as a model to characterize the in vivo infectivity of PERV. To enhance the susceptibility of guinea pigs to retroviral infection or genomic integration, moderate physiological or immunological changes were induced prior to exposing the animals to PERV. Quantitative PERV-specific PCR performed on all tested samples resulted in either undetectable or very low copy numbers of proviruses, even in animals possessing PERV-specific antibody responses. The low copy number of viral DNA detected suggests that PERV infected a limited number of cells. However, PERV DNA levels did not increase over time, suggesting no virus replication occurred. These results in the guinea pig are similar to previous observations of non-human primate cells that allow PERV infection but do not support PERV replication in vitro.  (+info)

Inactivation of transmissible spongiform encephalopathy (prion) agents by environ LpH. (32/231)

Agents causing transmissible spongiform encephalopathy (TSE) diseases are resistant to inactivation by several conventional decontamination methods. Using an animal bioassay, we compared the TSE agent disinfectant efficacy of a commercially available product referred to alternatively as LpH-SE, LpH-AG, or LpH-st to that of a similarly named but differently formulated product, Environ LpH, which was found to be an effective TSE agent disinfectant in a previous study. Here, we found LpH-SE to be at least 10(4)-fold to 10(5)-fold less effective than Environ LpH.  (+info)