(1/739) Characterization of nuclear structures containing superhelical DNA.

Structures resembling nuclei but depleted of protein may be released by gently lysing cells in solutions containing non-ionic detergents and high concentrations of salt. These nucleoids sediment in gradients containing intercalating agents in a manner characteristic of DNA that is intact, supercoiled and circular. The concentration of salt present during isolation of human nucleoids affects their protein content. When made in I-95 M NaCl they lack histones and most of the proteins characteristic of chromatin; in 1-0 M NaCl they contain variable amounts of histones. The effects of various treatments on nucleoid integrity were investigated.  (+info)

(2/739) Role of surface proteins in Vibrio cholerae attachment to chitin.

The role of surface proteins in Vibrio cholerae attachment to chitin particles in vitro was studied. Treatment of V. cholerae O1 ATCC 14034 and ATCC 14035 with pronase E reduced the attachment of bacteria to chitin particles by 57 to 77%. A statistically significant reduction was also observed when the attachment to chitin was evaluated in the presence of homologous Sarkosyl-insoluble membrane proteins (MPs) (67 to 84%), N-acetylglucosamine (GlcNAc) (62%), the sugar that makes up chitin, and wheat germ agglutinin (40 to 56%), a lectin that binds GlcNAc. The soluble oligomers N,N'-diacetylchitobiose or N,N', N"-triacetylchitotriose caused an inhibition of 14 to 23%. Sarkosyl-insoluble MPs able to bind chitin particles were isolated and visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; two of these peptides (molecular sizes, 36 and 53 kDa) specifically bind GlcNAc.  (+info)

(3/739) Pronase destroys the lipopolysaccharide receptor CD14 on Kupffer cells.

CD14 is a lipopolysaccharide (LPS) receptor distributed largely in macrophages, monocytes, and neutrophils; however, the role of CD14 in activation of Kupffer cells by LPS remains controversial. The purpose of this study was to determine if different methods used to isolate Kupffer cells affect CD14. Kupffer cells were isolated by collagenase (0.025%) or collagenase-Pronase (0.02%) perfusion and differential centrifugation using Percoll gradients and cultured for 24 h before experiments. CD14 mRNA was detected by RT-PCR from Kupffer cell total RNA as well as from peritoneal macrophages. Western blotting showed that Kupffer cells prepared with collagenase possess CD14; however, it was absent in cells obtained by collagenase-Pronase perfusion. Intracellular calcium in Kupffer cells prepared with collagenase was increased transiently to levels around 300 nM by addition of LPS with 5% rat serum, which contains LPS binding protein. This increase in intracellular calcium was totally serum dependent. Moreover, LPS-induced increases in intracellular calcium in Kupffer cells were blunted significantly (40% of controls) when cells were treated with phosphatidylinositol-specific phospholipase C, which cleaves CD14 from the plasma membrane. However, intracellular calcium did not increase when LPS was added to cells prepared by collagenase-Pronase perfusion even in the presence of serum. These cells were viable, however, because ATP increased intracellular calcium to the same levels as cells prepared with collagenase perfusion. Tumor necrosis factor-alpha (TNF-alpha) mRNA was increased in Kupffer cells prepared with collagenase perfusion 1 h after addition of LPS, an effect potentiated over twofold by serum; however, serum did not increase TNF-alpha mRNA in cells isolated via collagenase-Pronase perfusion. Moreover, treatment with Pronase rapidly decreased CD14 on mouse macrophages (RAW 264.7 cells) and Kupffer cells. These findings indicate that Pronase cleaves CD14 from Kupffer cells, whereas collagenase perfusion does not, providing an explanation for why Kupffer cells do not exhibit a CD14-mediated pathway when prepared with procedures using Pronase. It is concluded that Kupffer cells indeed contain a functional CD14 LPS receptor when prepared gently.  (+info)

(4/739) Tonic activation of presynaptic GABAB receptors in the opener neuromuscular junction of crayfish.

Release of excitatory transmitter from boutons on crayfish nerve terminals was inhibited by (R,S)-baclofen, an agonist at GABAB receptors. Baclofen had no postsynaptic actions as it reduced quantal content without affecting quantal amplitude. The effect of baclofen increased with concentration producing 18% inhibition at 10 microM; EC50, 50% inhibition at 30 microM; maximal inhibition, 85% at 100 microM and higher. There was no desensitization, even with 200 or 320 microM baclofen. Phaclofen, an antagonist at GABAB receptors, competitively antagonized the inhibitory action of baclofen (KD = 50 microM, equivalent to a pA2 = 4.3 +/- 0.1). Phaclofen on its own at concentrations below 200 microM had no effect on release, whereas at 200 microM phaclofen itself increased the control level of release by 60%, as did 2-hydroxy-saclofen (200 microM), another antagonist at GABAB receptors. This increase was evidently due to antagonism of a persistent level of GABA in the synaptic cleft, since the effect was abolished by destruction of the presynaptic inhibitory fiber, using intra-axonal pronase. We conclude that presynaptic GABAB receptors, with a pharmacological profile similar to that of mammalian GABAB receptors, are involved in the control of transmitter release at the crayfish neuromuscular junction.  (+info)

(5/739) A study of the native-denatured (N in equilibrium with D) transition in lysozyme. II. Kinetic analysis of protease digestion.

Kinetic analyses of the protease digestion of several chemical derivatives of lysozyme [EC] showed that only the D(denatured) state of the protein is digested and that the reaction velocity is proportional to the equilibrium constant (KD) of the N in equilibrium with D transition of the protein. Alteration of the net charge of lysozyme by acetylation caused a shift of the N in equilibrium with D transition to the right (ten-fold increase in KD compared to that of native enzyme). Both the formation of a lysozyme-inhibitor complex and the introduction of a covalent bond in the lysozyme molecule restricted the transition. The magnitude of the N in equilibrium with D transition is related to the susceptibility of lysozyme to protease digestion and it is estimated that the N in equilibrium with D transition in proteins is generally important in the intracellular catabolism of proteins.  (+info)

(6/739) Infection of chicken embryonic fibroblasts by measles virus: adaptation at the virus entry level.

Measles virus (MV) has a tropism restricted to humans and primates and uses the human CD46 molecule as a cellular receptor. MV has been adapted to grow in chicken embryonic fibroblasts (CEF) and gave rise to an attenuated live vaccine. Halle and Schwarz MV strains were compared in their ability to infect both simian Vero cells and CEF. Whereas both strains infected Vero cells, only the CEF-adapted Schwarz strain was able to efficiently infect CEF. Since the expression of the human MV receptor CD46 rendered the chicken embryonic cell line TCF more permissive to the infection by the Halle MV strain, the MV entry into CEF appeared to be a limiting step in the absence of prior MV adaptation. CEF lacked reactivity with anti-CD46 antibodies but were found to express another protein allowing MV binding as an alternative receptor to CD46.  (+info)

(7/739) Structural heterogeneity in the core oligosaccharide of the S-layer glycoprotein from Aneurinibacillus thermoaerophilus DSM 10155.

The surface layer glycoprotein of Aneurinibacillus thermoaerophilus DSM 10155 has a total carbohydrate content of 15% (by mass), consisting of O-linked oligosaccharide chains. After proteolytic digestion of the S-layer glycoprotein byPronase E and subsequent purification of the digestion products by gel permeation chromatography, chromatofocusing and high-performance liquid chromatography two glycopeptide pools A and B with identical glycans and the repeating unit structure -->4)-alpha-l-Rha p -(1-->3)-beta-d- glycero -d- manno -Hep p -(1--> (Kosma et al., 1995b, Glycobiology, 5, 791-796) were obtained. Combined evidence from modified Edman-degradation in combination with liquid chromatography electrospray mass-spectrometry and nuclear magnetic resonance spectroscopy revealed that both glycopeptides contain equal amounts of the complete core structure alpha-l-Rha p -(1-->3)-alpha-l-Rha p -(1-->3)-beta-d-Gal p NAc-(1-->O)-Thr/Ser and the truncated forms alpha-l-Rha p -(1-->3)-beta-d-Gal p NAc-(1-->O)-Thr/Ser and beta-d-Gal p NAc-(1-->O)-Thr/Ser. All glycopeptides possessed the novel linkage types beta-d-Gal p NAc-(1-->O)-Thr/Ser. The different cores were substituted with varying numbers of disaccharide repeating units. By 300 MHz proton nuclear magnetic resonance spectroscopy the complete carbohydrate core structure of the fluorescently labeled glyco-peptide B was determined after Smith-degradation of its glycan chain. The NMR data confirmed and complemented the results of the mass spectroscopy experiments. Based on the S-layer glycopeptide structure, a pathway for its biosynthesis is suggested.  (+info)

(8/739) Interaction of secreted nascent chains with surrounding membrane in Bacillus subtilis.

To determine the length of secreted nascent polypeptide chain that is surrounded by membrane, we digested labeled nascent chains protruding from protoplasts of Bacillus subtilis with Pronase and isolated the residual ribosome-attached chains from the membrane-polysome fraction. Gel chromatography revealed a sharp major peak that had been protected by membrane plus bound ribosomes. The ribosomes themselves protected half as great a length. Because no free chain between the ribosome and the membrane was detected by Pronase treatment, the difference between the two protected lengths should measure the length protected by the membrane. More accurate measurements of these lengths, obtained by dansylation of the exposed NH2 terminus of the isolated fragments, yielded a difference of 21 amino acids. This value corresponds to an extended chain of 75 A, which is approximately the thickness of the bacterial cell membrane. We earlier presented evidence that bacterial ribosomes are attached to membrane solely by their secreted chain. The present results further show that after loss of the extracellular segment of the chain its attachment persists, at 37 degrees as well as 0 degrees C. These findings suggest that the chain does not slip through a passive membrane but is actively held within a channel.  (+info)