Dopaminergic tone and obesity: an insight from prolactinomas treated with bromocriptine. (41/259)

OBJECTIVE: It has recently been shown that increased body weight is associated with prolactinomas and that weight loss occurs with normalization of prolactin levels. On the other hand, decreased dopaminergic tone in humans is well correlated with obesity. The objective of this study was to correlate changes in prolactin levels with leptin and body mass index (BMI) in patients with prolactinomas treated with the long-acting dopamine agonist bromocriptine (BC). METHODS: Eleven female and twelve male patients, aged 36.7+/-2.6 years with BMI in males of 30.4+/-1.7 kg/m(2) and in females of 24.4+/-1.2 kg/m(2), were evaluated after 1 and 6 months and 11 patients were further evaluated after 2 years of BC therapy. Plasma prolactin is presented as the mean of four samples taken daily. Serum leptin was determined in the pooled serum from three samples taken at 15-min intervals at 0800 h after an overnight fast. Multivariate linear regression and repeated measures analysis of covariance were used. RESULTS: In males, pretreatment prolactin levels were 71 362+/-29 912 mU/l while leptin levels were 14.9+/-1.8 microg/l. In females, pretreatment prolactin levels were 11 395+/-5839 mU/l and leptin levels were 16.7+/-2.5 microg/l. The sexual dimorphism of serum leptin levels at initial presentation was preserved after adjusting for BMI and prolactin-induced hypogonadism. After 1 month of therapy, prolactin levels significantly decreased (males: 17 618+/-8736 mU/l, females: 3686+/-2231; P<0.05), BMI did not change (males: 30.2+/-1.7 kg/m(2), females: 24.1+/-1.2 kg/m(2); P>0.05), while serum leptin levels decreased (males: 12.5+/-1.5 microg/l, females: 13.6+/-2.1 microg/l; P<0.05). After 6 months of treatment, prolactin further decreased (males: 3456+/-2101 mU/l, females: 677+/-360 mU/l; P<0.05) as did BMI (males: 28.6+/-1.6 kg/m(2), females 23.1+/-1.0 kg/m(2); P<0.05). The difference was more pronounced in male patients. Leptin levels were 12.8+/-2.8 microg/l in males and 12.9+/-1.8 microg/l in females (P<0.05). After 2 years of BC treatment, prolactin levels were near normal (males: 665+/-439 mU/l, females 447+/-130 mU/l; P<0.05) and BMI remained 26.5+/-1.9 kg/m(2) for males and 23.6+/-0.8 kg/m(2) for females (P<0.05). Leptin levels were 9.5+/-2.2 microg/l in males and 18.7+/-3.1 microg/l in females (P<0.05). There was a gradual increase in the gender difference in serum leptin levels over time. Changes in serum leptin levels significantly correlated with changes in BMI (r=0.844, P<0.001) but did not correlate with changes in plasma prolactin levels after 1 month (r=0.166), 6 months (r=0.313) and 2 years (r=0.234, P>0.05). CONCLUSION: The long-acting dopamine agonist BC, by increasing dopaminergic tone, may influence body weight and likely body composition by mechanisms in addition to reducing hyperprolactinemia in patients with prolactinomas.  (+info)

Clinicopathologic study of 123 cases of prolactin-secreting pituitary adenomas with special reference to multihormone production and clonality of the adenomas. (42/259)

BACKGROUND: Prolactinoma is the most invasive type of pituitary adenoma and is generally believed to be well-differentiated adenoma and to produce only prolactin (PRL). The factors related to the various biologic behaviors occurring in patients of different ages and sexes await clarification. Since different immunophenotypes of adenoma may show different biologic behaviors and responses to medical agents, the authors examined hormone production and tried to clarify the clonality of plurihormonal prolactinoma. METHODS: Clinicopathologic factors were studied in 123 patients with prolactinomas (40 males and 83 females). The specimens were fixed in either 10% neutral buffered formalin or 70% alcohol and used for light microscopy. Alcohol-fixed tissue was used to extract DNA from 26 samples obtained from female patients for human androgen receptor gene (HUMARA) assay. RESULTS: Sixty one cases (50%) were pure prolactinoma and 62 cases (50%) were plurihormonal prolactinoma. Spearman rank correlation analysis revealed a significant relationship between age and serum PRL level (P = 0.0002), age and tumor volume (P < 0.0001), and tumor volume and serum PRL level (P < 0.0001). Multiple regression analysis showed a significant correlation only between tumor volume and serum PRL level. The Mann-Whitney U test revealed that prolactinomas associated with higher PRL levels, larger adenomas, and higher ages were significantly more invasive to the cavernous sinus and that male patients had significantly higher PRL levels and larger adenomas. The HUMARA assay disclosed that 11 of 13 plurihormonal prolactinomas (85%) were compatible with monoclonal origin. CONCLUSIONS: The current results suggest that not only can various hormones other than PRL be secreted by prolactinoma, but also that most multihormone-producing prolactinomas are monoclonal in origin.  (+info)

Proteasome inhibitors induce apoptosis in growth hormone- and prolactin-secreting rat pituitary tumor cells. (43/259)

Proteasome inhibitors induce apoptosis in some malignant cells, and we show here that these inhibitors induce apoptosis in rat pituitary MMQ and GH3 tumor cells but not in normal pituitary cells. Three proteasome inhibitors, PSI, MG-132, and lactacystin, but not the calpain inhibitor, ALLM, dose- and time-dependently caused apoptosis in these cells, and 10 microM PSI caused apoptosis in 70% of MMQ cells and in 25% of GH3 cells within 24 h. A lower PSI dose (10 nM) inhibited GH3 cell growth without causing significant apoptosis or affecting prolactin secretion. Primary rat pituitary cells were resistant to both PSI and MG-132 and did not undergo apoptosis. In MMQ cells, DNA synthesis was slowed (approximately 30%) after 6 h of 10 microM PSI treatment and a partial cell cycle block at G2/M was evident after 8 h. Colorimetric caspase substrate assay and Western blotting of caspase substrates showed that caspases 2 and 3 are activated by PSI while caspases 6 and 8 remained inactive. A broad-range caspase inhibitor, caspase inhibitor III, prevented apoptosis induced by PSI. The results show that proteasome inhibitors induce apoptosis in rat pituitary tumor cells by specific caspase activation. This novel group of drugs may potentially be used in treatment of aggressive pituitary tumors, especially as their action appears relative for tumor cells.  (+info)

Lack of prolactin receptor signaling in mice results in lactotroph proliferation and prolactinomas by dopamine-dependent and -independent mechanisms. (44/259)

Hypothalamic dopamine inhibits pituitary prolactin secretion and proliferation of prolactin-producing lactotroph cells by activating lactotroph dopamine D2 receptors (D2Rs). Conversely, prolactin (PRL) stimulates hypothalamic dopamine neurons via PRL receptors (PRLRs) in a short-loop feedback circuit. We used Drd2(-/-) and Prlr(-/-) mutant mice to bypass this feedback and investigate possible dopamine-independent effects of PRL on lactotroph function. The absence of either receptor induced hyperprolactinemia and large prolactinomas in females. Small macroadenomas developed in aged Prlr(-/-) males, but only microscopic adenomas were found in Drd2(-/-) male mice. Pharmacologic studies in Prlr(-/-) mice with D2R agonists and antagonists demonstrated a significant loss of endogenous dopamine tone, i.e., constitutive inhibitory signaling by the D2R, in the pituitary. However, Prlr(-/-) mice exhibited more profound hyperprolactinemia and larger tumors than did age-matched Drd2(-/-) mice, and there were additive effects in compound homozygous mutant male mice. In vitro, PRL treatment markedly inhibited the proliferation of wild-type female and male Drd2(-/-) lactotrophs, but had no effect on female Drd2(-/-) lactotrophs, suggesting a downregulation or desensitization of PRLR in response to chronic hyperprolactinemia. We conclude that PRL inhibits lactotrophs by two distinct mechanisms: (a) indirectly by activation of hypothalamic dopamine neurons and (b) directly within the pituitary in a dopamine-independent fashion.  (+info)

Enhanced uptake of ifosfamide into GH3 prolactinomas with hypercapnic hyperoxic gases monitored in vivo by (31)P MRS. (45/259)

Previously, (31)P magnetic resonance spectroscopy (MRS) has been used to detect ifosfamide (IF) in vivo and to show that breathing carbogen (5% CO(2)/95% O(2)) enhances the uptake and increases the efficacy of IF in rat GH3 prolactinomas [Rodrigues LM, Maxwell RJ, McSheehy PMJ, Pinkerton CR, Robinson SP, Stubbs M, and Griffiths JR (1997). In vivo detection of ifosfamide by (31)P MRS in rat tumours; increased uptake and cytotoxicity induced by carbogen breathing in GH3 prolactinomas. Br J Cancer 75, 62-68]. We now show that other hypercapnic and/or hyperoxic (5% CO(2) in air, 2.5% CO(2) in O(2)) gas mixtures also increase the uptake of IF into tumors, measured by (31)P MRS. All gases caused an increased uptake (C(max)) of IF compared to air breathing, with carbogen inducing the largest increase (85% (P<.02) compared to 46% with 2.5% CO(2) in O(2) (P<.004) and 48% with 5% CO(2) in air (P<.004)). The T(max) (time of maximum concentration in tumor posintravenous injection of IF) was significantly (P<.04) later in the cohort that breathed 5% CO(2) in air. The increased uptake of IF with carbogen breathing was selective to tumor tissue and there were no significant increases in any of the normal tissues studied, suggesting that any host tissue toxicity would be minimal. Carbogen breathing by patients causes breathlessness. There was no significant difference in IF uptake between breathing carbogen and 2.5% CO(2) in O(2) and, therefore, the ability of 2.5% CO(2) in O(2) to also increase IF uptake may be clinically useful as it causes less patient discomfort.  (+info)

Antibodies to pituitary surface antigens during various pituitary disease states. (46/259)

Autoantibodies to cell surface antigens of human somatotropinoma (ASAS), human prolactinoma (ASAP) and rat adenohypophysis (ASARA) were assayed in the serum of patients with pituitary diseases associated with GH deficiency (GHD), such as pituitary dwarfism and primary empty sella syndrome (ESS), and in the serum of patients with hyperprolactinaemia of different etiologies: idiopathic hyperprolactinaemia, prolactinoma and ESS. The investigation was carried out with a cellular variant of an ELISA. Among children with GHD, the highest percentage of antibody-positive patients was found in the group with idiopathic isolated GHD (89% of ASAS(+) patients and 30% of ASARA(+) patients vs 33.3% and 0% respectively in the group with idiopathic combined pituitary hormone deficiency, and 33.3% and 9% in patients with pituitary hypoplasia associated with isolated GHD or combined pituitary hormone deficiency). Among hyperprolactinaemic patients, the highest ASAP and ASARA frequency was observed in patients with idiopathic hyperprolactinaemia (67.7% and 41.9% respectively) where it was twice as high as in the group of patients with prolactinoma. The proportion of ASAS(+) and ASARA(+) did not differ significantly between the groups of patients with ess with or without GHD. Similarly, there was no significant difference between the number of ESS ASAP(+) and ASARA(+) patients with or without hyperprolactinaemia. The data obtained suggested that autoimmune disorders may be primary, and responsible, at least in part, for pituitary dysfunction in the cases of idiopathic isolated GHD and idiopathic hyperprolactinaemia. At the same time, the autoimmune disorders in the patients with prolactinoma or ESS are probably secondary to the organic pituitary lesion and their significance in the development of the pituitary dysfunction is obscure.  (+info)

Role of E-cadherin, alpha-, beta-, and gamma-catenins, and p120 (cell adhesion molecules) in prolactinoma behavior. (47/259)

E-cadherin/catenin complex regulates cellular adhesion and motility and is believed to function as an invasion suppressor system. In a number of cancers, abnormal and reduced expression of E-cadherin/catenin complex is associated with tumor invasion and metastasis. Prolactinomas show frequent invasion on the surrounding structures, despite their histologically benign nature. Furthermore, gender-based differences in endocrine and surgical findings are found in patients with prolactinoma. To understand biological factors governing prolactinoma behavior, this study analyzed the expression of E-cadherin; alpha-, beta-, and gamma-catenins; p120; and cell proliferation marker MIB-1 labeling index in 13 invasive tumors (9 in men, 4 in women), 26 noninvasive tumors (4 in men, 22 in women), and 8 normal anterior pituitaries by immunohistochemistry. Immunostaining of E-cadherin; alpha-, beta-, and gamma-catenins; and p120 showed a membranous pattern of reactivity and generally stronger in normal pituitaries than in prolactinomas. Expression of E-cadherin and beta-catenin was significantly lower in invasive than in noninvasive prolactinomas (P <.002 and P <.005, respectively), and reduced expression of E-cadherin and beta-catenin was more frequent in invasive than in noninvasive prolactinomas (P <.001 and P <.05, respectively); in contrast, gamma-catenin expression showed higher in invasive than in noninvasive prolactinomas (P <.05). Expression of E-cadherin was significantly lower in macroprolactinomas than in microprolactinomas (P <.01), and decreased expression of E-cadherin and beta-catenin predicted high MIB-1 expression (P <.05). Moreover, the expression of E-cadherin and beta-catenin was significantly lower in macroprolactinomas in men than in those in women (P <.01 and P <.02, respectively). No statistical correlations were observed between expression of alpha-catenin, p120, and clinicopathologic features. In conclusion, the reduction of E-cadherin and beta-catenin expression was related to invasiveness and proliferative status of prolactinomas and correlated with the more aggressive behavior of prolactinomas in men compared with in women.  (+info)

Involvement of bone morphogenetic protein 4 (BMP-4) in pituitary prolactinoma pathogenesis through a Smad/estrogen receptor crosstalk. (48/259)

Pituitary tumor development involves clonal expansion stimulated by hormones and growth factorscytokines. Using mRNA differential display, we found that the bone morphogenetic protein (BMP) inhibitor noggin is down-regulated in prolactinomas from dopamine D2-receptor-deficient mice. BMP-4 is overexpressed in prolactinomas taken from dopamine D2-receptor-deficient female mice, but expression of the highly homologous BMP-2 does not differ in normal pituitary tissue and prolactinomas. BMP-4 is overexpressed in other prolactinoma models, including estradiol-induced rat prolactinomas and human prolactinomas, compared with normal tissue and other pituitary adenoma types (Western blot analysis of 48 tumors). BMP-4 stimulates, and noggin blocks, cell proliferation and the expression of c-Myc in human prolactinomas, whereas BMP-4 has no action in other human pituitary tumors. GH3 cells stably transfected with a dominant negative of Smad4 (Smad4dn; a BMP signal cotransducer) or noggin have reduced tumorigenicity in nude mice. Tumor growth recovered in vivo when the Smad4dn expression was lost, proving that BMP-4Smad4 are involved in tumor development in vivo. BMP-4 and estrogens act through overlapping intracellular signaling mechanisms on GH3 cell proliferation and c-myc expression: they had additive effects at low concentrations but not at saturating doses, and their action was inhibited by blocking either pathway with the reciprocal antagonist (i.e., BMP-4 with ICI 182780 or 17beta-estradiol with Smad4dn). Furthermore, coimmunoprecipitation studies demonstrate that under BMP-4 stimulation Smad4 and Smad1 physically interact with the estrogen receptor. This previously undescribed prolactinoma pathogenesis mechanism may participate in tumorigenicity in other cells where estrogens and the type beta transforming growth factor family have important roles.  (+info)