Role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in the control of prolactin, growth hormone and gonadotropin secretion in prepubertal rats. (73/4090)

Excitatory amino acids, such as glutamate, constitute a major transmitter system in the control of hypothalamic-pituitary secretion. Different subtypes of glutamate receptors, such as NMDA (N-methyl-d-aspartic acid) and KA (kainate) receptors, are involved in the control of anterior pituitary secretion. Other receptor subtypes, such as AMPA (activated by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) and metabotropic receptors, have been identified, although their role in the control of neuroendocrine function remains largely unknown. Recent reports have demonstrated the involvement of AMPA receptors in the control of the steroid-induced luteinizing hormone (LH) surge in female and growth hormone (GH) secretion in male rats. The aim of this study was to assess the potential role of AMPA receptors in the control of GH, prolactin (PRL), LH and follicle-stimulating hormone (FSH) secretion in prepubertal 23-day-old rats. To this end, prepubertal female rats were injected with AMPA (2.5 or 5 mg/kg i.p.) or the antagonist of AMPA receptors 1,2,3,4-tetrahydro-6-nitro-2, 3-dioxo-benzo (f) quinoxaline-7-sulfonamide (NBQX; 0.25 or 0.50 mg/kg i.p.). Serum LH and FSH concentrations and hypothalamic LH-releasing hormone (LHRH) content remained unchanged after AMPA or NBQX administration. In contrast, serum PRL levels significantly decreased 15, 30 and 60 min after i.p. administration of AMPA and increased 120 min after NBQX treatment, whereas serum GH levels increased after AMPA treatment and decreased after NBQX administration. Considering that AMPA has been shown to activate a subset of kainate receptors, its effects were compared with those elicited by 2.5 mg/kg KA in prepubertal female rats. At this age, however, KA was unable to reproduce the effects of AMPA on PRL and GH secretion, thus suggesting that the actions observed after AMPA administration were carried out specifically through AMPA receptors. In addition, as the effects of AMPA on LH secretion in adult females have been proved to be steroid-dependent, the effects of AMPA (2.5 mg/kg) and NBQX (0.5 mg/kg) were tested in prepubertal animals with different gonadal backgrounds, i.e. intact males, and intact and ovariectomized (OVX) females. The effects of AMPA in prepubertal females appeared to be modulated by ovarian secretion, as the inhibition of PRL secretion disappeared and LH secretion was partially suppressed by AMPA in OVX animals whereas the stimulatory effect on GH release was enhanced by ovariectomy. Furthermore, in male rats, AMPA administration significantly decreased PRL secretion and increased serum GH levels, the amplitude of the GH response being higher than in prepubertal females. To ascertain the pituitary component for the reported actions of AMPA, hemi-pituitaries of male rats were incubated in the presence of AMPA (10(-8)-10(-6) M). The results obtained showed no effect of AMPA on PRL, GH and gonadotropin secretion in vitro. Finally, we investigated the involvement of the dopaminergic (DA) system in the inhibitory action of AMPA on PRL secretion. Pre-treatment of prepubertal female rats with a dopamine receptor antagonist (domperidone: 1 mg/kg) resulted in the blockage of AMPA-mediated inhibition of PRL secretion, thus suggesting that this action is probably mediated by an increase in DA activity. In conclusion, we provide evidence for the physiological role of AMPA receptors in the control of PRL and GH secretion in prepubertal rats. In contrast, our data cast doubts on the involvement of AMPA receptors in the regulation of gonadotropin secretion at this age. The effects of AMPA reported herein were not mediated through activation of kainate receptors and were probably exerted at the hypothalamic or suprahypothalamic levels. In addition, we show that ovarian secretion actively modulates the effects of AMPA receptor activation on anterior pituitary secretion in prepubertal female rats.  (+info)

Altered arterial concentrations of placental hormones during maximal placental growth in a model of placental insufficiency. (74/4090)

Pregnant ewes were exposed chronically to thermoneutral (TN; 20+/-2 degrees C, 30% relative humidity; n=8) or hyperthermic (HT; 40+/-2 degrees C 12 h/day, 35+/-2 degrees C 12 h/day, 30% relative humidity, n=6) environments between days 37 and 93 of pregnancy. Ewes were killed following 56 days of exposure to either environment (days in treatment (dit)), corresponding to 93+/-1 day post coitus (dpc). Maternal core body temperatures (CBT) in HT ewes were significantly elevated above the TN ewes (HT; 39.86+/-0.1 degrees C vs TN; 39.20+/-0.1 degrees C; P<0.001). Both groups of animals displayed circadian CBT, though HT ewes had elevated amplitudes (HT; 0.181+/-0.002 degrees C vs TN; 0.091+/-0.002 degrees C; P<0.001) and increased phase shift constants (HT; 2100 h vs TN; 1800 h; P<0.001). Ewes exposed to chronic heat stress had significantly reduced progesterone and ovine placental lactogen (oPL) concentrations from 72 and 62 dpc respectively (P<0.05), corresponding to approximately 30 dit. However, when compared with the TN ewes, HT cotyledonary tissue oPL mRNA and protein concentrations were not significantly different (P>0.1). Prolactin concentrations rose immediately upon entry into the HT environment, reaching concentrations approximately four times that of TN ewes, a level maintained throughout the study (HT; 216.31+/-32.82 vs TN; 54. 40+/-10.0; P<0.0001). Despite similar feed intakes and euglycemia in both groups of ewes, HT fetal body weights were significantly reduced when compared with TN fetuses (HT; 514.6+/-48.7 vs TN; 703. 4+/-44.8; P<0.05), while placental weights (HT; 363.6+/-63.3 vs TN; 571.2+/-95.9) were not significantly affected by 56 days of heat exposure. Furthermore, the relationship between body weight and fetal length, the ponderal index, was significantly reduced in HT fetuses (HT; 3.01+/-0.13 vs TN; 3.57+/-0.18; P<0.05). HT fetal liver weights were also significantly reduced (HT; 27.31+/-4.73 vs TN; 45.16+/-6.16; P<0.05) and as a result, the brain/liver weight ratio was increased. This study demonstrates that chronic heat exposure lowers circulating placental hormone concentrations. The observation that PL mRNA and protein contents are similar across the two treatments, suggests that reduced hormone concentrations are the result of impaired trophoblast cell development, specifically trophoblast migration. Furthermore, the impact of heat exposure during maximal placental growth is great enough to restrict early fetal development, even before the fetal maximal growth phase (100 dpc-term). These data highlight that intrauterine growth retardation (IUGR) may result primarily from placental trophoblast cell dysfunction, and secondarily from later reduced placental size.  (+info)

Endocrine features of polycystic ovary syndrome in a random population sample of 14-16 year old adolescents. (75/4090)

Hospital based studies have shown that oligomenorrhoeic adolescents have high luteinizing hormone (LH) and androgen concentrations, endocrine signs of polycystic ovary syndrome (PCOS). The prevalence of these abnormalities in an unselected population of adolescents is not known. We determined LH, follicle stimulating hormone (FSH), androstenedione, testosterone, dehydroepiandrosterone sulphate (DHEAS), oestradiol and prolactin concentrations in unselected population samples of adolescents with oligomenorrhoea, secondary amenorrhoea and regular menstrual cycles. A total of 2248 white, west European adolescents, aged 15.3 +/- 0.6 (mean +/- SD) years, participated. Blood was taken from 107 adolescents with regular menstrual cycles, 52 with oligomenorrhoea and four with secondary amenorrhoea. Oligomenorrhoeic adolescents had higher mean LH, androstenedione, testosterone, DHEAS and oestradiol concentrations compared with girls with regular menstrual cycles; 57% of the oligomenorrhoeic girls had LH or androgen concentrations above the 95th centile of adolescents with regular menstrual cycles. None of the 52 oligomenorrhoeic girls and only one of four girls with secondary amenorrhoea had a hypogonadotrophic endocrine pattern. The present study and available literature support the view that oligomenorrhoea in adolescents is not a stage in the physiological maturation of the hypothalamic pituitary-ovarian axis but an early sign of PCOS associated with subfertility. Physicians should consider endocrine evaluation before reassuring oligomenorrhoeic girls or prescribing oral contraceptives to these girls.  (+info)

Influence of prolactin on the differentiation of mouse B-lymphoid precursors. (76/4090)

Development and activation of immune cells are submitted to hormonal influences, as illustrated by the roles of corticosteroids in thymus, pregnancy-related estrogens in B-cell development, or prolactin (PRL) on T-cell generation and function. We have analyzed the putative role of PRL in B lymphopoiesis and differentiation. We chose as an experimental model the interleukin (IL)-3 dependent BaF-3 pro-B cell line, which was transfected with the rat long form of the PRL receptor (PRL-R) and transferred from IL-3- to PRL-enriched media. When stimulated with PRL, the PRL-R transfectants underwent some changes characteristic of B-cell differentiation: (a) IL-2R alpha chain became positively controlled by PRL; (b) antiapoptotic Bcl-2 protein was induced by PRL in a dose-dependent manner; and (c) transcription of the pre-B cell receptor encoding the lambda5 gene was strongly up-regulated. We attempted to evaluate the differentiation-promoting activity of PRL in more physiological conditions, and the presence of PRL-R in bone marrow B-cell precursors was revealed. Furthermore, PRL promoted significant expansions of defined B-lineage cell populations in short-term bone marrow cell cultures. These findings suggest that PRL, in collaboration with other cytokines and hormonal influences, modulates B-cell development.  (+info)

Biological properties of human prolactin analogs depend not only on global hormone affinity, but also on the relative affinities of both receptor binding sites. (77/4090)

Zinc increases the affinity of human growth hormone (hGH) for the human prolactin receptor (hPRLR) due to the coordination of one zinc ion involving Glu-174(hGH) and His-18(hGH). In contrast, binding of hPRL to the hPRLR is zinc-independent. We engineered in binding site 1 of hPRL a hGH-like zinc coordination site, by mutating Asp-183(hPRL) (homologous to Glu-174(hGH)) into Glu (D183E mutation). This mutation was also introduced into G129R hPRL, a binding site 2 mutant (Goffin, V., Kinet, S., Ferrag, F., Binart, N., Martial, J. A. , and Kelly, P. A. (1996) J. Biol. Chem. 271, 16573-16579). These analogs were characterized using a stable clone expressing both the hPRLR and a PRLR-responsive reporter gene. The D183E mutation per se decreases the binding affinity and transcriptional activity of hPRL. However, this loss is partially rescued by the addition of zinc and the effect is much more marked on bioactivity than on binding affinity. These data indicate that the D183E mutation confers zinc sensitivity to hPRL biological properties. Due to an impaired site 2, the agonistic activity of G129R analog is almost nil. Although the double mutant D183E/G129R displays lower affinity ( approximately 1 log) compared with G129R hPRL, it unexpectedly recovers partial agonistic activity in the absence of zinc. Moreover, whereas zinc increases the affinity of D183E/G129R, it paradoxically abolishes its agonistic activity. Our results demonstrate that the biological properties of hPRL analogs do not necessarily parallel their overall affinity. Rather, the relative affinities of the individual binding sites 1 and 2 may play an even more important role.  (+info)

Two-week pulsatile gonadotropin releasing hormone infusion unmasks dual (hypothalamic and Leydig cell) defects in the healthy aging male gonadotropic axis. (78/4090)

OBJECTIVE: To examine the possibility that lower serum bioavailable testosterone concentrations, without increased LH release, in healthy older men, reflects hypothalamic GnRH deficiency. DESIGN: We used a randomized, double-blind, placebo-controlled design. METHODS: We treated each of five young (ages 20-34 years) and five older (ages 60-78 years) men with 2 weeks of randomized infusions of saline or pulsatile GnRH (100 ng/kg i.v. every 90 min). RESULTS: At baseline (saline infusion), older men had more LH pulses (young compared with old, 10 +/- 0.6 compared with 15 +/- 1, P = 0.0026) per 24h, reduced fractional LH pulse amplitude (219 +/- 17% compared with 167 +/- 40%, P = 0.0376), and more disorderly hormone release as judged by approximate entropy (ApEn) (LH, P < or = 0.0001; testosterone, P < or = 0.0047). In response to pulsatile i.v. GnRH infusions, serum 24-h LH concentrations (measured by immunoradiometric assay (IRMA)), increased equivalently in young and older men (to 7.3 +/- 1.2 and 7.2 +/- 1.8 IU/l respectively). GnRH treatment also normalized LH pulse frequency and amplitude, ApEn, and plasma biologically active LH (pooled) concentrations. In contrast, 24-h testosterone concentrations failed to increase equivalently in older men (young compared with old, 869 +/- 88 compared with 517 +/- 38 ng/dl, P = 0.0061), reflecting lower testosterone peak maxima (995 +/- 108 compared with 583 +/- 48 ng/dl, P = 0.0083) and interpeak nadirs (750 +/- 87 compared with 427 +/- 26 ng/dl, P = 0.0073). CONCLUSIONS: We have demonstrated that, in older men, successful reconstitution of 24-h pituitary (bioactive) LH output and pulsatile (IRMA) LH release patterns could be achieved by a fixed exogenous GnRH pulse signal, thereby implicating altered endogenous hypothalamic GnRH release in the relative hypogonadotropism of aging. The failure of testosterone concentrations to increase concomitantly points to a simultaneous Leydig cell defect. We conclude that aging in men is marked by a dual defect in the central nervous system-pituitary-Leydig cell axis.  (+info)

Platelet peripheral-type benzodiazepine in pregnancy and lactation. (79/4090)

The aim of the present study was to investigate the impact of hormonal changes during pregnancy and lactation on the expression of peripheral-type benzodiazepine receptors in platelet membranes. Platelet peripheral benzodiazepine receptor binding characteristics, Hamilton anxiety and depression rating Scores, and progesterone and prolactin (PRL) levels were evaluated during pregnancy and lactation in 17 pregnant women [first (n = 9) and third (n = 8) trimesters], 10 lactating women, and 8 nonpregnant women. A significant decrease (38-41%) in peripheral benzodiazepine receptor density was observed in women during the third trimester of pregnancy when compared to nonpregnant controls and women in their first trimester of pregnancy. The decrease is peripheral benzodiazepine receptors was parallel to the peak in progesterone and PRL secretion. The reduction in peripheral benzodiazepine receptor expression is hormone-dependent and may play a regulatory role geared to prevent pregnancy-related overactivity of the hypothalamic-pituitary-ovarian, hypothalamic-pituitary-adrenal, and hypothalamic-PRL axes.  (+info)

Orexin A activates locus coeruleus cell firing and increases arousal in the rat. (80/4090)

The localization of orexin neuropeptides in the lateral hypothalamus has focused interest on their role in ingestion. The orexigenic neurones in the lateral hypothalamus, however, project widely in the brain, and thus the physiological role of orexins is likely to be complex. Here we describe an investigation of the action of orexin A in modulating the arousal state of rats by using a combination of tissue localization and electrophysiological and behavioral techniques. We show that the brain region receiving the densest innervation from orexinergic nerves is the locus coeruleus, a key modulator of attentional state, where application of orexin A increases cell firing of intrinsic noradrenergic neurones. Orexin A increases arousal and locomotor activity and modulates neuroendocrine function. The data suggest that orexin A plays an important role in orchestrating the sleep-wake cycle.  (+info)