Molecular basis for the progeroid variant of Ehlers-Danlos syndrome. Identification and characterization of two mutations in galactosyltransferase I gene. (1/254)

Progeroid type Ehlers-Danlos (E-D) syndrome was reported to be caused by defects in galactosyltransferase I (EC 2.4.1.133), which is involved in the synthesis of common linkage regions of proteoglycans. Recently, we isolated cDNA of the galactosyltransferase I (XGalT-1) (Okajima, T., Yoshida, K., Kondo, T., and Furukawa, K. (1999) J. Biol. Chem. 274, 22915-22918). Therefore, we analyzed mutations in this gene of a patient with progeroid type E-D syndrome by reverse transcription polymerase chain reaction and direct sequencing. Two changes of G and T to A and C at 186 and 206, respectively, were detected. Then, we determined the genomic DNA sequences encompassing the A186D and L206P mutations, revealing that the unaffected parents and two siblings were heterozygous for either one of the two different mutations and normal, while the patient had both of two different mutant genes. Enzymatic functions of cDNA clones of XGalT-1 containing the individual mutations were examined, elucidating that L206P clone completely lost the activity, while A186D retained approximately 50% or 10% of the activity when analyzed with extracts from cDNA transfectant cells or recombinant soluble enzymes, respectively. Moreover, L206P enzyme showed diffuse staining in the cytoplasm of transfectant cells, while the wild type or A186D clones showed Golgi pattern. These results indicated that the mutations in XGalT-1 were at least one of main molecular basis for progeroid type E-D syndrome.  (+info)

The establishment of telomerase-immortalized cell lines representing human chromosome instability syndromes. (2/254)

The limited life span of normal human cells represents a substantial obstacle for biochemical analysis, genetic manipulation and genetic screens. To overcome this technical barrier, immortal human cell lines are often derived from tumors or produced by transformation with viral oncogenes such as SV40 large T antigen. Cell lines produced by these approaches are invariably transformed, genomically unstable and display cellular properties that differ from their normal counterpart. It was recently shown that the ectopic expression of hTERT, encoding the catalytic subunit of human telomerase, can extend the life span of normal human cells without causing cellular transformation and genomic instability. In the present study, we have used hTERT to extend the life span of normal human skin fibroblasts derived from patients afflicted with syndromes of genomic instability and/or premature aging. Our results show that hTERT efficiently extends the life span without altering the characteristic phenotypic properties of the cells. Thus, the ectopic expression of telomerase represents a major improvement over the use of viral oncogenes for the establishment of human cell lines.  (+info)

Mitotic misregulation and human aging. (3/254)

Messenger RNA levels were measured in actively dividing fibroblasts isolated from young, middle-age, and old-age humans and humans with progeria, a rare genetic disorder characterized by accelerated aging. Genes whose expression is associated with age-related phenotypes and diseases were identified. The data also suggest that an underlying mechanism of the aging process involves increasing errors in the mitotic machinery of dividing cells in the postreproductive stage of life. We propose that this dysfunction leads to chromosomal pathologies that result in misregulation of genes involved in the aging process.  (+info)

Horizontal transmission of Candida parapsilosis candidemia in a neonatal intensive care unit. (4/254)

This report describes the nosocomial acquisition of Candida parapsilosis candidemia by one of the six premature newborns housed in the same room of a neonatal intensive care unit at the Ospedale Santa Chiara, Pisa, Italy. The infant had progeria, a disorder characterized by retarded physical development and progressive senile degeneration. The infant, who was not found to harbor C. parapsilosis at the time of his admission to the intensive care unit, had exhibited symptomatic conjunctivitis before the onset of a severe bloodstream infection. In order to evaluate the source of infection and the route of transmission, two independent molecular typing methods were used to determine the genetic relatedness among the isolates recovered from the newborn, the inanimate hospital environment, hospital personnel, topically and intravenously administered medicaments, and indwelling catheters. Among the isolates collected, only those recovered from the hands of two nurses attending the newborns and from both the conjunctiva and the blood of the infected infant were genetically indistinguishable. Since C. parapsilosis was never recovered from indwelling catheters or from any of the drugs administered to the newborn, we concluded that (i) horizontal transmission of C. parapsilosis occurred through direct interaction between nurses and the newborn and (ii) the conjunctiva was the site through which C. parapsilosis entered the bloodstream. This finding highlights the possibility that a previous C. parapsilosis colonization and/or infection of other body sites may be a predisposing condition for subsequent C. parapsilosis hematogenous dissemination in severely ill newborns.  (+info)

Telomere length predicts replicative capacity of human fibroblasts. (5/254)

When human fibroblasts from different donors are grown in vitro, only a small fraction of the variation in their finite replicative capacity is explained by the chronological age of the donor. Because we had previously shown that telomeres, the terminal guanine-rich sequences of chromosomes, shorten throughout the life-span of cultured cells, we wished to determine whether variation in initial telomere length would account for the unexplained variation in replicative capacity. Analysis of cells from 31 donors (aged 0-93 yr) indicated relatively weak correlations between proliferative ability and donor age (m = -0.2 doubling per yr; r = -0.42; P = 0.02) and between telomeric DNA and donor age (m = -15 base pairs per yr; r = -0.43; P = 0.02). However, there was a striking correlation, valid over the entire age range of the donors, between replicative capacity and initial telomere length (m = 10 doublings per kilobase pair; r = 0.76; P = 0.004), indicating that cell strains with shorter telomeres underwent significantly fewer doublings than those with longer telomeres. These observations suggest that telomere length is a biomarker of somatic cell aging in humans and are consistent with a causal role for telomere loss in this process. We also found that fibroblasts from Hutchinson-Gilford progeria donors had short telomeres, consistent with their reduced division potential in vitro. In contrast, telomeres from sperm DNA did not decrease with age of the donor, suggesting that a mechanism for maintaining telomere length, such as telomerase expression, may be active in germ-line tissue.  (+info)

Lack of peroxisomal catalase causes a progeric phenotype in Caenorhabditis elegans. (6/254)

Studies using the nematode Caenorhabditis elegans as a model system to investigate the aging process have implicated the insulin/insulin-like growth factor-I signaling pathway in the regulation of organismal longevity through its action on a subset of target genes. These targets can be classified into genes that shorten or extend life-span upon their induction. Genes that shorten life-span include a variety of stress response genes, among them genes encoding catalases; however, no evidence directly implicates catalases in the aging process of nematodes or other organisms. Using genetic mutants, we show that lack of peroxisomal catalase CTL-2 causes a progeric phenotype in C. elegans. Lack of peroxisomal catalase also affects the developmental program of C. elegans, since Deltactl-2 mutants exhibit decreased egg laying capacity. In contrast, lack of cytosolic catalase CTL-1 has no effect on either nematode aging or egg laying capacity. The Deltactl-2 mutation also shortens the maximum life-span of the long lived Deltaclk-1 mutant and accelerates the onset of its egg laying period. The more rapid aging of Deltactl-2 worms is apparently not due to increased carbonylation of the major C. elegans proteins, although altered peroxisome morphology in the Deltactl-2 mutant suggests that changes in peroxisomal function, including increased production of reactive oxygen species, underlie the progeric phenotype of the Deltactl-2 mutant. Our findings support an important role for peroxisomal catalase in both the development and aging of C. elegans and suggest the utility of the Deltactl-2 mutant as a convenient model for the study of aging and the human diseases acatalasemia and hypocatalasemia.  (+info)

Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. (7/254)

Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disorder, commonly caused by a point mutation in the lamin A gene that results in a protein lacking 50 aa near the C terminus, denoted LADelta50. Here we show by light and electron microscopy that HGPS is associated with significant changes in nuclear shape, including lobulation of the nuclear envelope, thickening of the nuclear lamina, loss of peripheral heterochromatin, and clustering of nuclear pores. These structural defects worsen as HGPS cells age in culture, and their severity correlates with an apparent increase in LADelta50. Introduction of LADelta50 into normal cells by transfection or protein injection induces the same changes. We hypothesize that these alterations in nuclear structure are due to a concentration-dependent dominant-negative effect of LADelta50, leading to the disruption of lamin-related functions ranging from the maintenance of nuclear shape to regulation of gene expression and DNA replication.  (+info)

Laminopathies and atherosclerosis. (8/254)

Laminopathies are genetic diseases that encompass a wide spectrum of phenotypes with diverse tissue pathologies and result mainly from mutations in the LMNA gene encoding nuclear lamin A/C. Some laminopathies affect the cardiovascular system, and a few (namely, Dunnigan-type familial partial lipodystrophy [FPLD2] and Hutchinson-Gilford progeria syndrome [HGPS]) feature atherosclerosis as a key component. The premature atherosclerosis of FPLD2 is probably related to characteristic proatherogenic metabolic disturbances such as dyslipidemia, hyperinsulinemia, hypertension, and diabetes. In contrast, the premature atherosclerosis of HGPS occurs with less exposure to metabolic proatherogenic traits and probably reflects the generalized process of accelerated aging in HGPS. Although some common polymorphisms of LMNA have been associated with traits related to atherosclerosis, the monogenic diseases FPLD2 and HGPS are more likely to provide clues about new pathways for the general process of atherosclerosis. Dunnigan-type familial partial lipodystrophy and Hutchinson-Gilford progeria syndrome are laminopathies caused by mutation in LMNA that feature atherosclerosis, which is related to proatherogenic metabolic disturbances and to the generalized process of accelerated aging, respectively. These monogenic diseases may provide clues about new pathways for atherogenesis.  (+info)