Loading...
(1/371) Procyanidin oligomers selectively and intensively promote proliferation of mouse hair epithelial cells in vitro and activate hair follicle growth in vivo.

We have previously reported that proanthocyanidins extracted from grape seeds possess growth-promoting activity toward murine hair epithelial cells in vitro and stimulate anagen induction in hair cycle progression in vivo. This report constitutes a comparison of the growth-promoting activity of procyanidin oligomers and the target cells of procyanidins in the skin. Results show that procyanidin dimer and trimer exhibit higher growth-promoting activity than the monomer. The maximum growth-promoting activity for hair epithelial cells with procyanidin B-2, an epicatechin dimer, reached about 300% (30 microM) relative to controls (= 100%) in a 5 d culture. Optimum concentration of procyanidin C-1, an epicatechin trimer, was lower than that of procyanidin B-2; the maximum growth-promoting activity of procyanidin C-1 was about 220% (3 microM). No other flavonoid compounds examined exhibit higher proliferative activities than the procyanidins. In skin constituent cells, only epithelial cells such as hair keratinocytes or epidermal keratinocytes respond to procyanidin oligomers. Topical application of 1% procyanidin oligomers on shaven C3H mice in the telogen phase led to significant hair regeneration [procyanidin B-2, 69.6% +/- 21.8% (mean +/- SD); procyanidin B-3, 80.9% +/- 13.0%; procyanidin C-1, 78.3% +/- 7.6%] on the basis of the shaven area; application of vehicle only led to regeneration of 41.7% (SD = 16.3%). In this paper, we demonstrate the hair-growing activity of procyanidin oligomers both in vitro and in vivo, and their potential for use as agents to induce hair growth.  (+info)

(2/371) Anti-tumor-promoting activity of a polyphenolic fraction isolated from grape seeds in the mouse skin two-stage initiation-promotion protocol and identification of procyanidin B5-3'-gallate as the most effective antioxidant constituent.

Procyanidins present in grape seeds are known to exert anti-inflammatory, anti-arthritic and anti-allergic activities, prevent skin aging, scavenge oxygen free radicals and inhibit UV radiation-induced peroxidation activity. Since most of these events are associated with the tumor promotion stage of carcinogenesis, these studies suggest that grape seed polyphenols and the procyanidins present therein could be anticarcinogenic and/or anti-tumor-promoting agents. Therefore, we assessed the anti-tumor-promoting effect of a polyphenolic fraction isolated from grape seeds (GSP) employing the 7,12-dimethylbenz[a]anthracene (DMBA)-initiated and 12-O-tetradecanoylphorbol 13-acetate (TPA)-promoted SENCAR mouse skin two-stage carcinogenesis protocol as a model system. Following tumor initiation with DMBA, topical application of GSP at doses of 0.5 and 1.5 mg/mouse/application to the dorsal initiated mouse skin resulted in a highly significant inhibition of TPA tumor promotion. The observed anti-tumor-promoting effects of GSP were dose dependent and were evident in terms of a reduction in tumor incidence (35 and 60% inhibition), tumor multiplicity (61 and 83% inhibition) and tumor volume (67 and 87% inhibition) at both 0.5 and 1.5 mg GSP, respectively. Based on these results, we directed our efforts to separate and identify the individual polyphenols present in GSP and assess their antioxidant activity in terms of inhibition of epidermal lipid peroxidation. Employing HPLC followed by comparison with authentic standards for retention times in HPLC profiles, physiochemical properties and spectral analysis, nine individual polyphenols were identified as catechin, epicatechin, procyanidins B1-B5 and C1 and procyanidin B5-3'-gallate. Five of these individual polyphenols with evident structural differences, namely catechin, procyanidin B2, procyanidin B5, procyanidin C1 and procyanidin B5-3'-gallate, were assessed for antioxidant activity. All of them significantly inhibited epidermal lipid peroxidation, albeit to different levels. A structure-activity relationship study showed that with an increase in the degree of polymerization in polyphenol structure, the inhibitory potential towards lipid peroxidation increased. In addition, the position of linkage between inter-flavan units also influences lipid peroxidation activity; procyanidin isomers with a 4-6 linkage showed stronger inhibitory activity than isomers with a 4-8 linkage. A sharp increase in the inhibition of epidermal lipid peroxidation was also evident when a gallate group was linked at the 3'-hydroxy position of a procyanidin dimer. Procyanidin B5-3'-gallate showed the most potent antioxidant activity with an IC(50) of 20 microM in an epidermal lipid peroxidation assay. Taken together, for the first time these results show that grape seed polyphenols possess high anti-tumor-promoting activity due to the strong antioxidant effect of procyanidins present therein. In summary, grape seed polyphenols in general, and procyanidin B5-3'-gallate in particular, should be studied in more detail to be developed as cancer chemopreventive and/or anticarcinogenic agents.  (+info)

(3/371) Protection against peroxynitrite by cocoa polyphenol oligomers.

Flavonoids, natural plant constituents, protect against peroxynitrite and can thereby play a role in defense against this mediator of inflammation. Procyanidin oligomers of different size (monomer through nonamer), isolated from the seeds of Theobroma cacao, were examined for their ability to protect against peroxynitrite-dependent oxidation of dihydrorhodamine 123 and nitration of tyrosine. By molarity, oligomers were more effective than the monomeric epicatechin; the tetramer was particularly efficient at protecting against oxidation and nitration reactions. These results suggest that epicatechin oligomers found in cocoa powder and chocolate may be a potent dietary source for defense against peroxynitrite.  (+info)

(4/371) Oligomeric proanthocyanidin complexes: history, structure, and phytopharmaceutical applications.

Considerable recent research has explored therapeutic applications of oligomeric proanthocyanidin complexes (OPCs), naturally occurring plant metabolites widely available in fruits, vegetables, nuts, seeds, flowers, and bark. OPCs are primarily known for their antioxidant activity. However, these compounds have also been reported to demonstrate antibacterial, antiviral, anticarcinogenic, anti-inflammatory, anti-allergic, and vasodilatory actions. In addition, they have been found to inhibit lipid peroxidation, platelet aggregation, capillary permeability and fragility, and to affect enzyme systems including phospholipase A2, cyclooxygenase, and lipoxygenase. Based on these reported findings, OPCs may be a useful component in the treatment of a number of conditions.  (+info)

(5/371) Procyanidin content and variation in some commonly consumed foods.

Procyanidins are a subclass of flavonoids found in commonly consumed foods that have attracted increasing attention due to their potential health benefits. However, little is known regarding their dietary intake levels because detailed quantitative information on the procyanidin profiles present in many food products is lacking. Therefore, the procyanidin content of red wine, chocolate, cranberry juice and four varieties of apples has been determined. On average, chocolate and apples contained the largest procyanidin content per serving (164.7 and 147.1 mg, respectively) compared with red wine and cranberry juice (22.0 and 31.9 mg, respectively). However, the procyanidin content varied greatly between apple samples (12.3-252.4 mg/serving) with the highest amounts on average observed for the Red Delicious (207.7 mg/serving) and Granny Smith (183.3 mg/serving) varieties and the lowest amounts in the Golden Delicious (92.5 mg/serving) and McIntosh (105.0 mg/serving) varieties. The compositional data reported herein are important for the initial understanding of which foods contribute most to the dietary intake of procyanidins and may be used to compile a database necessary to infer epidemiological relationships to health and disease.  (+info)

(6/371) Cocoa procyanidins and human cytokine transcription and secretion.

We examined whether cocoa, in its isolated procyanidin fractions (monomer through decamer), would modulate cytokine production at the levels of transcription and protein secretion in both resting and phytohemagglutinin (PHA)-stimulated peripheral blood mononuclear cells (PBMC). In resting cells, interleukin (IL)-1beta and IL-4 gene expression from cocoa-treated cells varied markedly among the subjects tested. However, at the protein level, the larger fractions (pentamer through decamer) stimulated a dramatic increase in IL-1beta concentration (up to ninefold) with increasing degree of polymerization. Similarly, these larger fractions augmented IL-4 concentration by as much as 2 pg/ml, whereas the control displayed levels nearly undetectable. In the presence of PHA, gene expression also seemed to be most affected by the larger procyanidin fractions. The pentameric through decameric fractions increased IL-1 beta expression by 7-19% compared with PHA control, whereas the hexameric through decameric fractions significantly inhibited PHA-induced IL-4 transcription in the range of 71-86%. This observation at the transcription level for IL-1 beta was reflected at the protein level in PHA-stimulated PBMC. Significant reductions in mitogen-induced IL-4 production were also seen at the protein level with the hexamer, heptamer and octamer. Individual oligomeric cocoa fractions were unstimulatory for IL-2 in resting PBMC. However, when induced with PHA, the pentamer, hexamer and heptamer fractions caused a 61-73% inhibition in IL-2 gene expression. This study offers additional data for the consideration of the health benefits of dietary polyphenols from a wide variety of foods, including those benefits associated specifically with cocoa and chocolate consumption.  (+info)

(7/371) Reactions of peroxynitrite with cocoa procyanidin oligomers.

Peroxynitrite is a mediator molecule in inflammation, and its biological properties are being studied extensively. Flavonoids, which are natural plant constituents, protect against peroxynitrite and thereby could play an anti-inflammatory role. Procyanidin oligomers of different sizes (monomer through nonamer), isolated from the seeds of Theobroma cacao, were recently examined for their ability to protect against peroxynitrite-dependent oxidation of dihydrorhodamine 123 and nitration of tyrosine and were found to be effective in attenuating these reactions. The tetramer was particularly efficient at protecting against oxidation and nitration reactions. Epicatechin oligomers found in cocoa powder and chocolate may be a potent dietary source for defense against peroxynitrite.  (+info)

(8/371) Effects of cocoa extracts on endothelium-dependent relaxation.

The aim of this study was to examine the effects of procyanidins derived from cocoa on vascular smooth muscle. Two hypotheses were tested: 1) extracts of cocoa, which are rich in procyanidins, cause endothelium-dependent relaxation (EDR), and 2) extracts of cocoa activate endothelial nitric oxide synthase (NOS). The experiments were carried out on aortic rings obtained from New Zealand White rabbits. The polymeric procyanidins (tetramer through decamer of catechin) caused an EDR. In addition, the Ca(2+)-dependent NOS activity, measured by the L-arginine to L-citrulline conversion assay, was significantly increased in aortic endothelial cells exposed to polymeric procyanidins, whereas monomeric compounds had no such effect. These findings demonstrate that polymeric procyanidins cause an EDR that is mediated by activation of NOS.  (+info)