Purification and kinetic analysis of the two recombinant arogenate dehydrogenase isoforms of Arabidopsis thaliana. (1/37)

The present study reports the first purification and kinetic characterization of two plant arogenate dehydrogenases (EC, an enzyme that catalyses the oxidative decarboxylation of arogenate into tyrosine in presence of NADP. The two Arabidopsis thaliana arogenate dehydrogenases TyrAAT1 and TyrAAT2 were overproduced in Escherichia coli and purified to homogeneity. Biochemical comparison of the two forms revealed that at low substrate concentration TyrAAT1 is four times more efficient in catalyzing the arogenate dehydrogenase reaction than TyrAAT2. Moreover, TyrAAT2 presents a weak prephenate dehydrogenase activity whereas TyrAAT1 does not. The mechanism of the dehydrogenase reaction catalyzed by these two forms has been investigated using steady-state kinetics. For both enzymes, steady-state velocity patterns are consistent with a rapid equilibrium, random mechanism in which two dead-end complexes, E-NADPH-arogenate and E-NADP-tyrosine, are formed.  (+info)

Mapping of chorismate mutase and prephenate dehydrogenase domains in the Escherichia coli T-protein. (2/37)

The Escherichia coli bifunctional T-protein transforms chorismic acid to p-hydroxyphenylpyruvic acid in the l-tyrosine biosynthetic pathway. The 373 amino acid T-protein is a homodimer that exhibits chorismate mutase (CM) and prephenate dehydrogenase (PDH) activities, both of which are feedback-inhibited by tyrosine. Fifteen genes coding for the T-protein and various fragments thereof were constructed and successfully expressed in order to characterize the CM, PDH and regulatory domains. Residues 1-88 constituted a functional CM domain, which was also dimeric. Both the PDH and the feedback-inhibition activities were localized in residues 94-373, but could not be separated into discrete domains. The activities of cloned CM and PDH domains were comparatively low, suggesting some cooperative interactions in the native state. Activity data further indicate that the PDH domain, in which NAD, prephenate and tyrosine binding sites were present, was more unstable than the CM domain.  (+info)

Purification and properties of chorismate mutase-prephenate dehydratase and prephenate dehydrogenase from Alcaligenes eutrophus. (3/37)

Chorismate mutase and prephenate dehydratase from Alcaligenes autophus H16 were purified 470-fold with a yield of 24%. During the course of purification, including chromatography on diethylaminoethyl (DEAE)-cellulose, phenylalanine-substituted Sepharose, Sephadex G-200 and hydrogyapatite, both enzymes appeared in association. The ratio of their specific activities remained almost constant. The molecular weight of chorismate mutase-prephenast dehydratase varied from 144,000 to 187,000 due to the three different determination methods used. Treatment of electrophoretically homogeneous mutase-dehydratase with sodium dodecyl sulfate dissociated the enzyme into a single component of molecular weight 47,000, indicating a tetramer of identical subunits. The isoelectric point of the bifunctional enzyme was 5.8. Prephenate dehydrogenase was not associated with other enzyme activities; it was separated from mutasedehydratase by DEAE-cellulose chromatgraphy. Chromatography on DEAE Sephadex, Sephadex G-200, and hydroxyapatite resulted in a 740-fold purification with a yield of 10%. The molecular weight of the enzyme was 55,000 as determined by sucrose gradient centrifugation and 65,000 as determined by gel filtration or electrophoresis. Its isoelectric point was pH 6.6. In the overall conversion of chorismate to phenylpyruvate, free prephenate was formed which accumulated in the reaction mixture. The dissociation of prephenate allowed prephenate dehydrogenase to compete with prephenate dehydratase for the substrate.  (+info)

Engineering plant shikimate pathway for production of tocotrienol and improving herbicide resistance. (4/37)

Tocochromanols (tocopherols and tocotrienols), collectively known as vitamin E, are essential antioxidant components of both human and animal diets. Because of their potential health benefits, there is a considerable interest in plants with increased or customized vitamin E content. Here, we have explored a new strategy to reach this goal. In plants, phenylalanine is the precursor of a myriad of secondary compounds termed phenylpropanoids. In contrast, much less carbon is incorporated into tyrosine that provides p-hydroxyphenylpyruvate and homogentisate, the aromatic precursors of vitamin E. Therefore, we intended to increase the flux of these two compounds by deriving their synthesis directly at the level of prephenate. This was achieved by the expression of the yeast (Saccharomyces cerevisiae) prephenate dehydrogenase gene in tobacco (Nicotiana tabacum) plants that already overexpress the Arabidopsis p-hydroxyphenylpyruvate dioxygenase coding sequence. A massive accumulation of tocotrienols was observed in leaves. These molecules, which were undetectable in wild-type leaves, became the major forms of vitamin E in the leaves of the transgenic lines. An increased resistance of the transgenic plants toward the herbicidal p-hydroxyphenylpyruvate dioxygenase inhibitor diketonitril was also observed. This work demonstrates that the synthesis of p-hydroxyphenylpyruvate is a limiting step for the accumulation of vitamin E in plants.  (+info)

A monofunctional prephenate dehydrogenase created by cleavage of the 5' 109 bp of the tyrA gene from Erwinia herbicola. (5/37)

A cohesive phylogenetic cluster that is limited to enteric bacteria and a few closely related genera possesses a bifunctional protein that is known as the T-protein and is encoded by tyrA. The T-protein carries catalytic domains for chorismate mutase and for cyclohexadienyl dehydrogenase. Cyclohexadienyl dehydrogenase can utilize prephenate or L-arogenate as alternative substrates. A portion of the tyr A gene cloned from Erwinia herbicola was deleted in vitro with exonuclease III and fused in-frame with a 5' portion of lacZ to yield a new gene, denoted tyrA*, in which 37 N-terminal amino acids of the T-protein are replaced by 18 amino acids encoded by the polycloning site/5' portion of the lacZ alpha-peptide of pUC19. The TyrA* protein retained dehydrogenase activity but lacked mutase activity, thus demonstrating the separability of the two catalytic domains. While the Km of the TyrA* dehydrogenase for NAD+ remained unaltered, the Km for prephenate was fourfold greater and the Vmax was almost twofold greater than observed for the parental T-protein dehydrogenase. Activity with L-arogenate, normally a relatively poor substrate, was reduced to a negligible level. The prephenate dehydrogenase activity encoded by tyrA* was hypersensitive to feedback inhibition by L-tyrosine (a competitive inhibitor with respect to prephenate), partly because the affinity for prephenate was reduced and partly because the Ki value for L-tyrosine was decreased from 66 microM to 14 microM. Thus, excision of a portion of the chorismate mutase domain is shown to result in multiple extra-domain effects upon the cyclohexadienyl dehydrogenase domain of the bifunctional protein.(ABSTRACT TRUNCATED AT 250 WORDS)  (+info)

A core catalytic domain of the TyrA protein family: arogenate dehydrogenase from Synechocystis. (6/37)

The TyrA protein family includes prephenate dehydrogenases, cyclohexadienyl dehydrogenases and TyrA(a)s (arogenate dehydrogenases). tyrA(a) from Synechocystis sp. PCC 6803, encoding a 30 kDa TyrA(a) protein, was cloned into an overexpression vector in Escherichia coli. TyrA(a) was then purified to apparent homogeneity and characterized. This protein is a model structure for a catalytic core domain in the TyrA superfamily, uncomplicated by allosteric or fused domains. Competitive inhibitors acting at the catalytic core of TyrA proteins are analogues of any accepted cyclohexadienyl substrate. The homodimeric enzyme was specific for L-arogenate (K(m)=331 microM) and NADP+ (K(m)=38 microM), being unable to substitute prephenate or NAD+ respectively. L-Tyrosine was a potent inhibitor of the enzyme (K(i)=70 microM). NADPH had no detectable ability to inhibit the reaction. Although the mechanism is probably steady-state random order, properties of 2',5'-ADP as an inhibitor suggest a high preference for L-arogenate binding first. Comparative enzymology established that both of the arogenate-pathway enzymes, prephenate aminotransferase and TyrA(a), were present in many diverse cyanobacteria and in a variety of eukaryotic red and green algae.  (+info)

The TyrA family of aromatic-pathway dehydrogenases in phylogenetic context. (7/37)

BACKGROUND: The TyrA protein family includes members that catalyze two dehydrogenase reactions in distinct pathways leading to L-tyrosine and a third reaction that is not part of tyrosine biosynthesis. Family members share a catalytic core region of about 30 kDa, where inhibitors operate competitively by acting as substrate mimics. This protein family typifies many that are challenging for bioinformatic analysis because of relatively modest sequence conservation and small size. RESULTS: Phylogenetic relationships of TyrA domains were evaluated in the context of combinatorial patterns of specificity for the two substrates, as well as the presence or absence of a variety of fusions. An interactive tool is provided for prediction of substrate specificity. Interactive alignments for a suite of catalytic-core TyrA domains of differing specificity are also provided to facilitate phylogenetic analysis. tyrA membership in apparent operons (or supraoperons) was examined, and patterns of conserved synteny in relationship to organismal positions on the 16S rRNA tree were ascertained for members of the domain Bacteria. A number of aromatic-pathway genes (hisHb, aroF, aroQ) have fused with tyrA, and it must be more than coincidental that the free-standing counterparts of all of the latter fused genes exhibit a distinct trace of syntenic association. CONCLUSION: We propose that the ancestral TyrA dehydrogenase had broad specificity for both the cyclohexadienyl and pyridine nucleotide substrates. Indeed, TyrA proteins of this type persist today, but it is also common to find instances of narrowed substrate specificities, as well as of acquisition via gene fusion of additional catalytic domains or regulatory domains. In some clades a qualitative change associated with either narrowed substrate specificity or gene fusion has produced an evolutionary "jump" in the vertical genealogy of TyrA homologs. The evolutionary history of gene organizations that include tyrA can be deduced in genome assemblages of sufficiently close relatives, the most fruitful opportunities currently being in the Proteobacteria. The evolution of TyrA proteins within the broader context of how their regulation evolved and to what extent TyrA co-evolved with other genes as common members of aromatic-pathway regulons is now feasible as an emerging topic of ongoing inquiry.  (+info)

Feedback inhibition of chorismate mutase/prephenate dehydrogenase (TyrA) of Escherichia coli: generation and characterization of tyrosine-insensitive mutants. (8/37)

In order to get insights into the feedback regulation by tyrosine of the Escherichia coli chorismate mutase/prephenate dehydrogenase (CM/PDH), which is encoded by the tyrA gene, feedback-inhibition-resistant (fbr) mutants were generated by error-prone PCR. The tyrA(fbr) mutants were selected by virtue of their resistance toward m-fluoro-D,L-tyrosine, and seven representatives were characterized on the biochemical as well as on the molecular level. The PDH activities of the purified His6-tagged TyrA proteins exhibited up to 35% of the enzyme activity of TyrA(WT), but tyrosine did not inhibit the mutant PDH activities. On the other hand, CM activities of the TyrA(fbr) mutants were similar to those of the TyrA(WT) protein. Analyses of the DNA sequences of the tyrA genes revealed that tyrA(fbr) contained amino acid substitutions either at Tyr263 or at residues 354 to 357, indicating that these two sites are involved in the feedback inhibition by tyrosine.  (+info)