Plasma concentration changes in LH and FSH following electrochemical stimulation of the medial preoptic are or dorsal anterior hypothalamic area of estrogen- or androgen-sterilized rats.(1/642)

 (+info)

Glucocorticoid receptor immunoreactivity in neurons and pituitary cells implicated in reproductive functions in rainbow trout: a double immunohistochemical study. (2/642)

In order to identify the nature of the glucocorticoid receptor (GR)-expressing neurons and pituitary cells that potentially mediate the negative effects of stress on reproductive performance, double immunohistochemical stainings were performed in the brain and pituitary of the rainbow trout (Oncorhynchus mykiss). To avoid possible cross-reactions during the double staining studies, combinations of primary antibodies raised in different species were used, and we report here the generation of an antibody raised in guinea pig against the rainbow trout glucocorticoid receptor (rtGR). The results obtained in vitellogenic females showed that GnRH-positive neurons in the caudal telencephalon/anterior preoptic region consistently exhibited rtGR immunoreactivity. Similarly, in the anterior ventral preoptic region, a group of tyrosine hydroxylase-positive neurons, known for inhibiting gonadotropin (GTH)-2 secretion during vitellogenesis, was consistently shown to strongly express GR. Finally, we show that a large majority of the GTH-1 (FSH-like) and GTH-2 (LH-like) cells of the pituitary exhibit rtGR immunoreactivity. These results indicate that cortisol may affect the neuroendocrine control of the reproductive process of the rainbow trout at multiple sites.  (+info)

Intrapreoptic microinjection of GHRH or its antagonist alters sleep in rats. (3/642)

Previous reports indicate that growth hormone-releasing hormone (GHRH) is involved in sleep regulation. The site of action mediating the nonrapid eye movement sleep (NREMS)-promoting effects of GHRH is not known, but it is independent from the pituitary. GHRH (0.001, 0. 01, and 0.1 nmol/kg) or a competitive antagonist of GHRH (0.003, 0.3, and 14 nmol/kg) was microinjected into the preoptic area, and the sleep-wake activity was recorded for 23 hr after injection in rats. GHRH elicited dose-dependent increases in the duration and in the intensity of NREMS compared with that in control records after intrapreoptic injection of physiological saline. The antagonist decreased the duration and intensity of NREMS and prolonged sleep latency. Consistent alterations in rapid eye movement sleep (REMS) and in brain temperature were not found. The GHRH antagonist also attenuated the enhancements in NREMS elicited by 3 hr of sleep deprivation. Histological verification of the injection sites showed that the majority of the effective injections were in the preoptic area and the diagonal band of Broca. The results indicate that the preoptic area mediates the sleep-promoting activity of GHRH.  (+info)

Effect of individual or combined ablation of the nuclear groups of the lamina terminalis on water drinking in sheep. (4/642)

The subfornical organ (SFO), organum vasculosum of the lamina terminalis (OVLT), and median preoptic nucleus (MnPO) were ablated either individually or in various combinations, and the effects on drinking induced by either intravenous infusion of hypertonic 4 M NaCl (1.3 ml/min for 30 min) or water deprivation for 48 h were studied. Ablation of either the OVLT or SFO alone did not affect drinking in response to intravenous 4 M NaCl, although combined ablation of these two circumventricular organs substantially reduced but did not abolish such drinking. Ablation of the MnPO or MnPO and SFO together also substantially reduced, but did not abolish, drinking in response to intravenous hypertonic NaCl. Only near-total destruction of the lamina terminalis (OVLT, MnPO, and part or all of the SFO) abolished acute osmotically induced drinking. The large lesions also reduced drinking after water deprivation, whereas none of the other lesions significantly affected such drinking. None of these lesions altered feeding. The results show that all parts of the lamina terminalis play a role in the drinking induced by acute increases in plasma tonicity. The lamina terminalis appears to play a less crucial role in the drinking response after water deprivation than for the drinking response to acute intravenous infusion of hypertonic saline.  (+info)

The vigilance promoting drug modafinil increases extracellular glutamate levels in the medial preoptic area and the posterior hypothalamus of the conscious rat: prevention by local GABAA receptor blockade. (5/642)

The effects of modafinil on glutamatergic and GABAergic transmission in the rat medial preoptic area (MPA) and posterior hypothalamus (PH), are analysed. Modafinil (30-300 mg/kg) increased glutamate and decreased GABA levels in the MPA and PH. Local perfusion with the GABAA agonist muscimol (10 microM), reduced, while the GABAA antagonist bicuculline (1 microM and 10 microM) increased glutamate levels. The modafinil (100 mg/kg)-induced increase of glutamate levels was antagonized by local perfusion with bicuculline (1 microM). When glutamate levels were increased by the local perfusion with the glutamate uptake inhibitor L-trans-PDC (0.5 mM), modafinil produced an additional enhancement of glutamate levels. Modafinil (1-33 microM) failed to affect [3H]glutamate uptake in hypothalamic synaptosomes and slices. These findings show that modafinil increases glutamate and decreases GABA levels in MPA and PH. The evidence that bicuculline counteracts the modafinil-induced increase of glutamate levels strengthens the evidence for an inhibitory GABA/glutamate interaction in the above regions controlling the sleep-wakefulness cycle.  (+info)

Distribution of estrogen receptor-beta messenger ribonucleic acid in the male sheep hypothalamus. (6/642)

As a first step in determining possible influences of the newly discovered estrogen receptor (ER)-beta on reproduction, we have localized mRNA for ER-beta within the male sheep hypothalamus using in situ hybridization and a rat ER-beta cRNA probe. Highest amounts of hybridization signal were observed in the preoptic area (POA), bed nucleus of the stria terminalis, paraventricular nucleus, and supraoptic nucleus. Relatively moderate amounts of hybridization signal were observed in the retrochiasmatic area (RCH), anterior hypothalamic area, dorsomedial hypothalamus, and lateral hypothalamus. Only a low level of hybridization signal was observed in the ventromedial hypothalamus, suprachiasmatic nucleus, and arcuate nucleus. The presence of ER-beta mRNA in several areas of the male sheep hypothalamus suggests multiple functions for this receptor. The distribution of ER-beta in the ovine hypothalamus was similar to that described for the rat, suggesting a high degree of functional conservation across species. A role for ER-beta in influencing reproduction is suggested by its presence in the POA and RCH, regions of the hypothalamus that control reproduction.  (+info)

Neurosteroid modulation of synaptic and GABA-evoked currents in neurons from the rat medial preoptic nucleus. (7/642)

The effects of the neurosteroid 3alpha-hydroxy-5alpha-pregnane-20-one (allopregnanolone) on synaptic and GABA-evoked currents in acutely dissociated neurons from the medial preoptic nucleus of rat were investigated by perforated-patch recordings under voltage-clamp conditions. The effect of 2.0 microM allopregnanolone on GABA-evoked currents depended strongly on the GABA concentration: the currents evoked by 100 microM GABA were markedly depressed and the desensitization was faster, but the decay after GABA application was prolonged. In contrast, the currents evoked by 1.0 microM GABA were markedly potentiated, the activation was faster, a prominent desensitization was induced, and the decay after GABA application was prolonged. In the absence of externally applied GABA, 2.0 microM allopregnanolone induced a slow current that could be attributed to Cl-. Allopregnanolone did not significantly affect the amplitude of spontaneous tetrodotoxin-insensitive (miniature) synaptic currents (mIPSCs) originating from synaptic terminals releasing GABA onto the dissociated neurons. However, the mIPSC decay phase was dramatically prolonged, with half-maximal effect at approximately 50 nM allopregnanolone. A qualitatively similar effect of allopregnanolone was seen when KCl was used to evoke synchronous GABA release. The frequency of mIPSCs was also affected, on average increased 3.5-fold, by 2.0 microM allopregnanolone, suggesting a presynaptic steroid action.  (+info)

Ovarian hormone dependence of alpha(1)-adrenoceptor activation of the nitric oxide-cGMP pathway: relevance for hormonal facilitation of lordosis behavior. (8/642)

The ovarian hormones estradiol (E(2)) and progesterone (P) facilitate rat lordosis behavior in part by regulating the expression of and signal transduction by adrenoceptors in the hypothalamus (HYP) and preoptic area (POA). The major adrenoceptor subtype mediating E(2) and P facilitation of lordosis is the alpha(1)-adrenoceptor. In the present studies, we tested the hypotheses that (1) alpha(1)-adrenoceptors in the HYP enhance lordosis responses by activating the nitric oxide (NO)-cGMP signaling pathway, and (2) coupling of alpha(1)-adrenoceptors to this signal transduction pathway is hormone-dependent. Basal levels of cGMP were significantly higher in HYP and POA slices from animals treated with E(2) and P when compared with slices from ovariectomized controls or females treated with only E(2) or P. When slices of HYP and POA from ovariectomized female rats were incubated with norepinephrine or the selective alpha(1)-adrenoceptor agonist phenylephrine, cGMP accumulation was observed only if slices had been derived from females treated with both E(2) and P before experimentation. Moreover, alpha(1)-adrenoceptor stimulation of cGMP synthesis was blocked by an inhibitor of NO synthase, confirming that these receptors act by NO-mediated stimulation of soluble guanylyl cyclase. Behavioral studies demonstrated further that the cell-permeable cGMP analog 8-bromoadenosine-cGMP reverses the inhibitory effects of the alpha(1)-adrenoceptor antagonist prazosin on lordosis behavior in E(2)- and P-treated female rats. Thus, the NO-cGMP pathway mediates the facilitatory effects of alpha(1)-adrenoceptors on lordosis behavior in female rats, and previous exposure of the HYP and POA to both E(2) and P are required to link alpha(1)-adrenoceptors to this pathway.  (+info)