Zona pellucida damage to human embryos after cryopreservation and the consequences for their blastomere survival and in-vitro viability. (1/30)

The study objective was to quantify zona pellucida (ZP) damage in cryopreserved human embryos. The influence of two different freezing containers was investigated, and the influence of freezing damage on the survival and viability of the embryos evaluated. ZP damage did not differ according to whether embryos originated from in-vitro fertilization (IVF) cycles or from IVF cycles in association with intracytoplasmic sperm injection (ICSI). The freezing container, however, significantly influenced the occurrence of ZP damage after cryopreservation. More damage was observed when the embryos were frozen-thawed using plastic cryovials than using plastic mini-straws (16.6% versus 2.3%; P < 0.0001). A clear association was found between blastomere survival and ZP intactness. Consequently, the percentage of embryos with 100% blastomere survival was higher when embryos were frozen-thawed using plastic mini-straws. The further cleavage of frozen-thawed embryos suitable for transfer was not different whether there was ZP damage or not; however, it was higher when there was 100% blastomere survival as compared with when some blastomeres were damaged (79.0% versus 43.7%; P < 0.0001). Consequently, more embryos suitable for transfer cleaved further when they were frozen-thawed using plastic mini-straws. In conclusion, the aim of a cryopreservation programme should be to have as many fully intact embryos as possible after thawing. Increased ZP damage might indicate a suboptimal cryopreservation procedure.  (+info)

Investigations of crashes involving pregnant occupants. (2/30)

Case reports of 16 crashes involving pregnant occupants are presented that illustrate the main conclusions of a crash-investigation program that includes 42 crashes investigated to date. Some unusual cases that are exceptions to the overall trends are also described. The study indicates a strong association between adverse fetal outcome and both crash severity and maternal injury. Proper restraint use, with and without airbag deployment, generally leads to acceptable fetal outcomes in lower severity crashes, while it does not affect fetal outcome in high-severity crashes. Compared to properly restrained pregnant occupants, improperly restrained occupants have a higher risk of adverse fetal outcome in lower severity crashes, which comprise the majority of all motor-vehicle collisions.  (+info)

Role for keratins 6 and 17 during wound closure in embryonic mouse skin. (3/30)

Injury to adult skin triggers a response designed to restore its vital barrier function. A conserved aspect of this response is a rapid switch in gene expression whereby the type II keratin 6 (K6) and type I keratins 16 and 17 (K16, K17) are induced in epithelial cells at the wound edge. This induction occurs at the expense of the keratins normally expressed during terminal differentiation and correlates with the activation of epithelial cells at the wound edge, ahead of their migration into the wound site. Here, we show that the capacity to enact this switch is already acquired in E11.5 stage mouse embryos. Such early timing is well ahead of the onset of differentiation-specific gene expression (approximately E13.5) and the acquisition of barrier formation by developing epidermis (approximately E16.5). Induction of K6, K16, and K17 correlates with changes in the morphology of epithelial cells at the wound edge. The closure of embryonic wounds is significantly delayed in K17 null embryos, but not embryos null for K6. These observations significantly extend the correlation between K6, K16, and K17 expression and epithelial wound closure, and provide direct evidence that expression of these keratins, K17 in particular, is important for the timeliness of this process.  (+info)

Detrimental effects of hypoxia-reoxygenation injury on development of rat embryos during organogenesis in vitro. (4/30)

AIM: To analyse the effects of hypoxia-reoxygenation on the development of rat embryos during early stages of gestation in vitro. METHODS: Whole embryo culture techniques were used to culture Wistar rat embryos under a range of gassing regimes, some of which included periods of mild hypoxia. After the termination of cultures, embryos were morphologically examined and assessed, and their protein content was determined. RESULTS: Cultured embryos exposed to 4 h of mild hypoxia did not show any significant growth or differentiation, as expected during this developmental stage. The ensuing 20 h reoxygenation period appeared to exacerbate the effects of the hypoxia. CONCLUSION: The effects of hypoxia during the perinatal or late fetal stages are well documented, but less is known of the effects at earlier stages of gestation. Our results indicate that during organogenesis, even short-term exposure to hypoxia may impose detrimental effects on growth and neurodevelopment of embryos.  (+info)

Differential effect of wounding on actin and its associated proteins, paxillin and gelsolin, in fetal skin explants. (5/30)

Skin from the embryonic day 17 rat retains the ability to epithelialize an excisional wound when isolated in serum-supplemented suspension culture. This ability is lost by embryonic day 19. We have investigated this effect of gestational age on fetal epithelial wound closure by correlating the involvement of filamentous actin (F-actin) and its associated proteins, paxillin and gelsolin, in the wound margins of embryonic day 17 and 19 rat skins, with the ability to close a full thickness excisional wound. Using fluorescent-phalloidin histochemistry and scanning confocal microscopy, actin polymerization was observed some five to six cells back from the margin of wounds in the embryonic day 17 skin as early as 3 h postwounding. As the wounds closed over the following 48-72 h, the actin further condensed around the epithelial margin before dispersing after wound closure. In contrast, no organization of actin was seen in the epithelial margin of wounds in skin from the embryonic day 19 embryos. Instead, actin filaments were observed surrounding the dermal wound margins. Chemical or mechanical disruption of the actin in wounded embryonic day 17 skins prevented epithelial closure, although wound repair was independent of cell division. In particular, incising the wound margin 24 h after wounding resulted in the "springing-open" of the embryonic day 17 wound but not the embryonic day 19 wound, reflecting the development of tension in the embryonic day 17 wound margin. Expression of paxillin mRNA was upregulated following wounding at embryonic day 17 but not at embryonic day 19. Paxillin was also observed to colocalize with actin in embryonic day 17 wounds, but not embryonic day 19 wounds, indicating a potential role for paxillin in epithelial repair of the fetal wound. In contrast, gelsolin mRNA was upregulated in embryonic day 19 fetal skin but not at embryonic day 17 and gelsolin protein was observed surrounding actin filaments at embryonic day 19 but not embryonic day 17. These results demonstrate a change in the mechanism of wound epithelialization at the same gestational age that fetal wounds change from scar-free to scar-forming wound repair.  (+info)

Ontogenetic transition in fetal wound transforming growth factor-beta regulation correlates with collagen organization. (6/30)

Fetal rat skin transitions from scarless fetal-type repair to adult-type repair with scar between day 16 (E16) and day 18 (E18) of gestation (term = 21.5 days). Deficient transforming growth factor (TGF)-beta 1 and -beta 2 injury response has been proposed as a mechanism for scarless fetal-type repair. However, previous fetal studies have inconsistently reported the degree of TGF-beta induction after injury. To minimize developmental variables in fetal versus adult TGF-beta regulation, we narrowed our study to wounded fetal animals. We hypothesize that TGF-beta ligand and receptor expression will be differentially regulated during the transition from early gestation (E16) wounds manifesting scarless fetal-type repair to late gestation (E19) wounds manifesting adult-type repair with scar. In this study, decreased and rapidly cleared TGF-beta 1 and -beta 2 expression accompanied by increased and prolonged TGF-beta 3 levels in wounded E16 animals correlated with organized collagen deposition. In contrast, increased and prolonged TGF-beta 1 and -beta 2 expression accompanied by decreased and delayed TGF-beta 3 expression in wounded E19 animals correlated with disorganized collagen architecture. Similarly, expression of TGF-beta receptors type I and II were also increased or prolonged in E19 animals. Our results implicate increased TGF-beta 1, -beta 2, and decreased TGF-beta 3 expression, as well as increased type I and II receptor expression in late gestation fetal scar formation.  (+info)

Evaluating pregnant occupant restraints: the effect of local uterine compression on the risk of fetal injury. (7/30)

In order to develop effective restraint systems for the pregnant occupant, injury criteria for determining fetal injury risk must be developed. This study presents computer simulations of a 30 week pregnant occupant that illustrate the importance of local uterine compression on the risk of fetal injury. Frontal impact simulations with a range of velocities and belt positions were used to identify the best correlation between local uterine compression and peak strain measured at the uterine-placental interface. It is suggested that future pregnant dummy development and specifically pregnant injury criteria should be based on local uterine compression relative to the placental attachment location.  (+info)

Rapid epithelialisation of fetal wounds is associated with the early deposition of tenascin. (8/30)

Wound healing is a complex process involving the interaction of many cell types with the extracellular matrix (ECM). Fetal skin wound healing differs from that in the adult in that it occurs rapidly and without scar formation. The mechanisms underlying these differing processes may be related to the fetal environment, the stage of differentiation of the fetal cells or the ECM deposited in the wound. The spatial and temporal distribution of two components of the ECM, fibronectin and tenascin, were studied by immunostaining of cryosections from trunk wounds of fetal and adult sheep. Epithelialisation was complete earlier in the fetal wound than in the adult. The distribution of fibronectin was similar in fetal and adult wounds but tenascin was present earlier in the fetal wound. Fibronectin has several roles in wound healing including acting as a substratum for cell migration and as a mediator of cell adhesion through cell surface integrins. The attachment of fibroblasts to fibronectin is inhibited by tenascin and during development the appearance of tenascin in the ECM of migratory pathways correlates with the initiation of cell migration. Similarly, the appearance of tenascin in healing wounds may initiate cell migration. Tenascin was present in these wounds prior to cell migration and the rapid epithelialisation of fetal wounds may be due to the early appearance of tenascin in the wound.  (+info)