Serological monitoring on layer farms with specific pathogen-free chickens. (73/1831)

To monitor the existence of avian pathogens in laying chicken flocks, specific pathogen-free (SPF) chickens were introduced into two layer farms and reared with laying hens for 12 months. SPF chickens were bled several times after their introduction and examined for their sero-conversion to avian pathogens. As a result, antibodies to eight or ten kinds of pathogens were detected in SPF chickens on each farm. Antibodies to infectious bronchitis virus (IBV), avian nephritis virus, Mycoplasma gallisepticum and M. synoviae were detected early within the first month. Antibody titer to IBV suggested that the laying chickens were infected with IBV repeatedly during the experiment on both farms. However, antibodies to infectious bursal disease virus and 6 pathogens were not detected.  (+info)

Phenotypic and genotypic characterization of virulence factors of Escherichia coli isolated from broiler chickens with simultaneous occurrence of cellulitis and other colibacillosis lesions. (74/1831)

The objective of this study was to characterize virulence factors of Escherichia coli isolates from broilers with simultaneous occurrence of cellulitis and other colibacillosis lesions. Thirty flocks were sampled and 237 birds with cellulitis were examined. Eighty-two (34.6%) of 237 birds condemned for cellulitis had gross lesions in the heart, air sacs, joints, or liver. In 58 chickens, E. coli was isolated from both the cellulitis and other lesions of colibacillosis, and 18.9% of the E. coli isolates from the 2 types of lesions belonged to the same O group. Escherichia coli of serogroups O78, O1, and O2 predominated. Isolates of the same serogroup that were derived from different lesions in the same birds had similar patterns of biotype, aerobactin production, serum sensitivity profile, antibiotic sensitivity, and K1 capsule production. Escherichia coli derived from cellulitis lesions produced virulence factors similar to those found in E. coli isolated from other colibacillosis lesions in poultry.  (+info)

Evidence for a genetically stable strain of Campylobacter jejuni. (75/1831)

The genetic stability of selected epidemiologically linked strains of Campylobacter jejuni during outbreak situations was investigated by using subtyping techniques. Strains isolated from geographically related chicken flock outbreaks in 1998 and from a human outbreak in 1981 were investigated. There was little similarity in the strains obtained from the different chicken flock outbreaks; however, the strains from each of three chicken outbreaks, including strains isolated from various environments, were identical as determined by fla typing, amplified fragment length polymorphism (AFLP) analysis, and pulsed-field gel electrophoresis, which confirmed the genetic stability of these strains during the short time courses of chicken flock outbreaks. The human outbreak samples were compared with strain 81116, which originated from the same outbreak but has since undergone innumerable laboratory passages. Two main AFLP profiles were recognized from this outbreak, which confirmed the serotyping results obtained at the time of the outbreak. The major type isolated from this outbreak (serotype P6:L6) was exemplified by strain 81116. Despite the long existence of strain 81116 as a laboratory strain, the AFLP profile of this strain was identical to the profiles of all the other historical P6:L6 strains from the outbreak, indicating that the genotype has remained stable for almost 20 years. Interestingly, the AFLP profiles of the P6:L6 group of strains from the human outbreak and the strains from one of the recent chicken outbreaks were also identical. This similarity suggests that some clones of C. jejuni remain genetically stable in completely different environments over long periods of time and considerable geographical distances.  (+info)

Immunohistochemical detection of avian pneumovirus in formalin-fixed tissues. (76/1831)

An immunohistochemical staining technique (IHC) was developed to detect avian pneumovirus (APV) antigen in formalin-fixed, paraffin-embedded tissue sections using streptavidin-biotin immunoperoxidase staining. Samples of nasal turbinates and infraorbital sinuses were collected from 4-week-old poults experimentally inoculated with APV and from older turkeys infected during naturally occurring outbreaks of avian pneumovirus. Tissue was fixed in 10% buffered neutral formalin, embedded in paraffin, sectioned and stained. Inflammatory changes were observed microscopically in the mucosa and submucosa of the nasal turbinates and infraorbital sinuses of both experimentally inoculated poults and naturally infected birds. Viral antigen was detected by IHC in the ciliated epithelial cells of nasal turbinates and infraorbital sinuses.  (+info)

Isolation of monoclonal antibodies that inhibit the binding of infectious bursal disease virus to LSCC-BK3 cells. (77/1831)

Three hybridoma cell lines producing monoclonal antibodies (MAbs) against LSCC-BK3 cells which are susceptible to infectious bursal disease virus (IBDV) infection were produced and characterized. The MAbs, designated T7, Q11 and Q13, inhibited the attachment of IBDV to LSCC-BK3 cells. Furthermore, these MAbs bound to LSCC-BK3 but not to nonpermissive cells in flow cytometry. MAb T7 detected a 110-kDa membrane protein of LSCC-BK3 cells, whereas Q11 and Q13 reacted with membrane proteins of molecular weights 58-, 85-, 90- and 110-kDa. These observations imply that the 110-kDa protein recognized by all the MAbs is associated with IBDV binding. The MAbs established in this study are useful for studying the interaction between IBDV and its target cell.  (+info)

Detection of cell membrane proteins that interact with virulent infectious bursal disease virus. (78/1831)

To detect the molecules that interact with infectious bursal disease virus (IBDV), the chicken B lymphoblastoid cell line, LSCC-BK3, which is permissive for virulent IBDV infection was investigated. The sodium dodecyl sulfate-solubilized plasma membrane fraction from the cells was subjected to a virus overlay protein binding assay. The IBDV specifically bound to proteins in LSCC-BK3 plasma membranes with molecular weights of 70, 82 and 110 kDa. This is the first report to demonstrate cellular molecules that interact with virulent IBDV.  (+info)

Resistance to Marek's disease herpesvirus-induced lymphoma is multiphasic and dependent on host genotype. (79/1831)

Genotype-dependent differences in Marek's disease (MD) susceptibility were identified using 14-day-old line N and 6(1) (resistant) and 151 and 7(2) (susceptible) inbred chickens infected with HPRS-16 MD virus (MDV). All line 72 chickens developed progressive MD. Line 15I had fluctuating MD-specific clinical signs and individuals recovered. A novel histologic scoring system enabled indices to be calculated for lymphocyte infiltration into nonlymphoid organs. All genotypes had increased mean lesion scores (MLSs) and mean total lesion scores after MDV infection. These differed quantitatively and qualitatively between the genotypes. Lines 6(1) and 7(2) had a similar MLS distribution in the cytolytic phase, although scores were greater in line 7(2). At the time lymphomas were visible in line 7(2), histologic lesions in line 6(1) were regressing. AV37+ cells were present in similar numbers in all genotypes in the cytolytic phase, suggesting that neoplastically transformed cells were present in all genotypes regardless of MD susceptibility. After the cytolytic phase, AV37+ cell numbers increased in lines 7(2) and 15I but decreased in lines 6(1) and N. In the cytolytic and latent phases, in all genotypes, most infiltrating cells were CD4+. After this time, line 7(2) and 15I lesions increased in size and most cells were CD4+; line 6(1) and N lesions decreased in size and most cells were CD8+. In all genotypes, AV37 immunostaining was weak in lesions with many CD8+ cells, suggesting that AV37 antigen expression or AV37+ cells were controlled by CD8+ cells. The rank order, determined by clinical signs and pathology, for MD susceptibility (highest to lowest) was 7(2) > 15I > 6(1) > N.  (+info)

Pathobiology of A/chicken/Hong Kong/220/97 (H5N1) avian influenza virus in seven gallinaceous species. (80/1831)

Direct bird-to-human transmission, with the production of severe respiratory disease and human mortality, is unique to the Hong Kong-origin H5N1 highly pathogenic avian influenza (HPAI) virus, which was originally isolated from a disease outbreak in chickens. The pathobiology of the A/chicken/Hong Kong/220/97 (H5N1) (HK/220) HPAI virus was investigated in chickens, turkeys, Japanese and Bobwhite quail, guinea fowl, pheasants, and partridges, where it produced 75-100% mortality within 10 days. Depression, mucoid diarrhea, and neurologic dysfunction were common clinical manifestations of disease. Grossly, the most severe and consistent lesions included splenomegaly, pulmonary edema and congestion, and hemorrhages in enteric lymphoid areas, on serosal surfaces, and in skeletal muscle. Histologic lesions were observed in multiple organs and were characterized by exudation, hemorrhage, necrosis, inflammation, or a combination of these features. The lung, heart, brain, spleen, and adrenal glands were the most consistently affected, and viral antigen was most often detected by immunohistochemistry in the parenchyma of these organs. The pathogenesis of infection with the HK/220 HPAI virus in these species was twofold. Early mortality occurring at 1-2 days postinoculation (DPI) corresponded to severe pulmonary edema and congestion and virus localization within the vascular endothelium. Mortality occurring after 2 DPI was related to systemic biochemical imbalance, multiorgan failure, or a combination of these factors. The pathobiologic features were analogous to those experimentally induced with other HPAI viruses in domestic poultry.  (+info)