Structural determinants of gating in inward-rectifier K+ channels. (17/2415)

The gating characteristics of two ion channels in the inward-rectifier K+ channel superfamily were compared at the single-channel level. The strong inward rectifier IRK1 (Kir 2.1) opened and closed with kinetics that were slow relative to those of the weakly rectifying ROMK2 (Kir 1.1b). At a membrane potential of -60 mV, both IRK and ROMK had single-exponential open-time distributions, with mean open times of 279 +/- 58 ms (n = 4) for IRK1 and 23 +/- 1 ms (n = 7) for ROMK. At -60 mV (and no EDTA) ROMK2 had two closed times: 1.3 +/- 0.1 and 36 +/- 3 ms (n = 7). Under the same conditions, IRK1 exhibited four discrete closed states with mean closed times of 0.8 +/- 0.1 ms, 14 +/- 0.6 ms, 99 +/- 19 ms, and 2744 +/- 640 ms (n = 4). Both the open and the three shortest closed-time constants of IRK1 decreased monotonically with membrane hyperpolarization. IRK1 open probability (Po) decreased sharply with hyperpolarization due to an increase in the frequency of long closed events that were attributable to divalent-cation blockade. Chelation of divalent cations with EDTA eliminated the slowest closed-time distribution of IRK1 and blunted the hyperpolarization-dependent fall in open probability. In contrast, ROMK2 had shorter open and closed times and only two closed states, and its Po was less affected by hyperpolarization. Chimeric channels were constructed to address the question of which parts of the molecules were responsible for the differences in kinetics. The property of multiple closed states was conferred by the second membrane-spanning domain (M2) of IRK. The long-lived open and closed states, including the higher sensitivity to extracellular divalent cations, correlated with the extracellular loop of IRK, including the "P-region." Channel kinetics were essentially unaffected by the N- and C-termini. The data of the present study are consistent with the idea that the locus of gating is near the outer mouth of the pore.  (+info)

Transmembrane structure of an inwardly rectifying potassium channel. (18/2415)

Inwardly rectifying potassium channels (K(ir)), comprising four subunits each with two transmembrane domains, M1 and M2, regulate many important physiological processes. We employed a yeast genetic screen to identify functional channels from libraries of K(ir) 2.1 containing mutagenized M1 or M2 domains. Patterns in the allowed sequences indicate that M1 and M2 are helices. Protein-lipid and protein-water interaction surfaces identified by the patterns were verified by sequence minimization experiments. Second-site suppressor analyses of helix packing indicate that the M2 pore-lining inner helices are surrounded by the M1 lipid-facing outer helices, arranged such that the M1 helices participate in subunit-subunit interactions. This arrangement is distinctly different from the structure of a bacterial potassium channel with the same topology and identifies helix-packing residues as hallmark sequences common to all K(ir) superfamily members.  (+info)

Novel gating mechanism of polyamine block in the strong inward rectifier K channel Kir2.1. (19/2415)

Inward rectifying K channels are essential for maintaining resting membrane potential and regulating excitability in many cell types. Previous studies have attributed the rectification properties of strong inward rectifiers such as Kir2.1 to voltage-dependent binding of intracellular polyamines or Mg to the pore (direct open channel block), thereby preventing outward passage of K ions. We have studied interactions between polyamines and the polyamine toxins philanthotoxin and argiotoxin on inward rectification in Kir2.1. We present evidence that high affinity polyamine block is not consistent with direct open channel block, but instead involves polyamines binding to another region of the channel (intrinsic gate) to form a blocking complex that occludes the pore. This interaction defines a novel mechanism of ion channel closure.  (+info)

Hydrogen peroxide, potassium currents, and membrane potential in human endothelial cells. (20/2415)

BACKGROUND: Hydrogen peroxide (H2O2) and reactive oxygen species are implicated in inflammation, ischemia-reperfusion injury, and atherosclerosis. The role of ion channels has not been previously explored. METHODS AND RESULTS: K+ currents and membrane potential were recorded in endothelial cells by voltage- and current-clamp techniques. H2O2 elicited both hyperpolarization and depolarization of the membrane potential in a concentration-dependent manner. Low H2O2 concentrations (0.01 to 0.25 micromol/L) inhibited the inward-rectifying K+ current (KIR). Whole-cell K+ current analysis revealed that H2O2 (1 mmol/L) applied to the bath solution increased the Ca2+-dependent K+ current (KCa) amplitude. H2O2 increased KCa current in outside-out patches in a Ca2+-free solution. When catalase (5000 micro/mL) was added to the bath solution, the outward-rectifying K+ current amplitude was restored. In contrast, superoxide dismutase (1000 u/mL) had only a small effect on the H2O2-induced K+ current changes. Next, we measured whole-cell K+ currents and redox potentials simultaneously with a novel redox potential-sensitive electrode. The H2O2-mediated KCa current increase was accompanied by a whole-cell redox potential decrease. CONCLUSIONS: H2O2 elicited both hyperpolarization and depolarization of the membrane potential through 2 different mechanisms. Low H2O2 concentrations inhibited inward-rectifying K+ currents, whereas higher H2O2 concentrations increased the amplitude of the outward K+ current. We suggest that reactive oxygen species generated locally increases the KCa current amplitude, whereas low H2O2 concentrations inhibit KIR via intracellular messengers.  (+info)

Hyperinsulinism: molecular aetiology of focal disease. (21/2415)

Persistent hypoglycaemia in infancy is most commonly caused by hyperinsulinism. A case is reported of the somatic loss of the maternal 11p in an insulin secreting focal adenoma in association with a germline SUR-1 mutation on the paternal allele in a baby boy with hyperinsulinism diagnosed at 49 days old. A reduction to homozygosity of an SUR-1 mutation is proposed as a critical part of the cause of focal hyperinsulinism.  (+info)

The structure and function of the ATP-sensitive K+ channel in insulin-secreting pancreatic beta-cells. (22/2415)

ATP-sensitive K+ channels (KATP channels) play important roles in many cellular functions by coupling cell metabolism to electrical activity. The KATP channels in pancreatic beta-cells are thought to be critical in the regulation of glucose-induced and sulfonylurea-induced insulin secretion. Until recently, however, the molecular structure of the KATP channel was not known. Cloning members of the novel inwardly rectifying K+ channel subfamily Kir6.0 (Kir6.1 and Kir6.2) and the sulfonylurea receptors (SUR1 and SUR2) has clarified the molecular structure of KATP channels. The pancreatic beta-cell KATP channel comprises two subunits: a Kir6.2 subunit and an SUR1 subunit. Molecular biological and molecular genetic studies have provided insights into the physiological and pathophysiological roles of the pancreatic beta-cell KATP channel in insulin secretion.  (+info)

Identification by differential display of a hypertonicity-inducible inward rectifier potassium channel highly expressed in chloride cells. (23/2415)

By using differential mRNA display to monitor the molecular alterations associated with adaptation of euryhaline eels to different salinities, we identified a cDNA fragment strongly induced in seawater eel gills. Cloning of a full-length cDNA and its expression in COS-7 cells indicated that the clone codes for an inward rectifier K+ channel (eKir) of 372 amino acid residues, which has two transmembrane segments and a typical pore-forming region (H5). Only low sequence similarities are present, except the H5 region, compared with other members of the inward rectifier K+ channel family (Kir). Consistent with this divergence in the amino acid sequence, a phylogenetic analysis indicated early divergence and independent evolution of eKir from other members; it is only distantly related to the Kir5.0 subfamily members. RNase protection analysis showed that eKir is highly expressed in the seawater eel gill, kidney, and posterior intestine but very weakly in freshwater eels. Immunohistochemistry of gill sections revealed dense localization of eKir in the chloride cells. Immunoelectron microscopy indicated that eKir is mainly present in the microtubular system in the chloride cell. This location and its salt-inducible nature suggest that the eKir channel cloned here is a novel member of the Kir5.0 subfamily of the Kir family and is implicated in osmoregulation.  (+info)

A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. (24/2415)

Proper ion channel function often requires specific combinations of pore-forming alpha and regulatory beta subunits, but little is known about the mechanisms that regulate the surface expression of different channel combinations. Our studies of ATP-sensitive K+ channel (K(ATP)) trafficking reveal an essential quality control function for a trafficking motif present in each of the alpha (Kir6.1/2) and beta (SUR1) subunits of the K(ATP) complex. We show that this novel motif for endoplasmic reticulum (ER) retention/retrieval is required at multiple stages of K(ATP) assembly to restrict surface expression to fully assembled and correctly regulated octameric channels. We conclude that exposure of a three amino acid motif (RKR) can explain how assembly of an ion channel complex is coupled to intracellular trafficking.  (+info)