Direct actions of nitric oxide on rat neurohypophysial K+ channels. (33/1050)

1. Nitric oxide (NO) has been shown to modulate neuropeptide secretion from the posterior pituitary. Here we show that NO activates large-conductance Ca2+-activated K+ (BK) channels in posterior pituitary nerve terminals. 2. NO, generated either by the photolysis of caged-NO or with chemical donors, irreversibly enhanced the component of whole-terminal K+ current due to BK channels and increased the activity of BK channels in excised patches. NO also inhibited the transient A-current. The time courses of these effects on K+ current were very different; activation of BK channels developed slowly over several minutes whereas inhibition of A-current immediately followed NO uncaging. 3. Activation of BK channels by NO occurred in the presence of guanylyl cyclase inhibitors and after removal of ATP or GTP from the pipette solution, suggesting a cGMP-independent signalling pathway. 4. The sulfhydryl alkylating agent N-ethyl maleimide (NEM) increased BK channel activity. Pretreatment with NEM occluded NO activation. 5. NO activation of BK channels occurred independently of voltage and cytoplasmic Ca2+ concentration. In addition, NO removed the strict Ca2+ requirement for channel activation, rendering channels highly active even at nanomolar Ca2+ levels. 6. These results suggest that NO, or a reactive nitrogen byproduct, chemically modifies nerve terminal BK channels or a closely associated protein and thereby produces an increase in channel activity. Such activation is likely to inhibit impulse activity in posterior pituitary nerve terminals and this may explain the inhibitory action of NO on secretion.  (+info)

Molecular cloning and characterization of the intermediate-conductance Ca(2+)-activated K(+) channel in vascular smooth muscle: relationship between K(Ca) channel diversity and smooth muscle cell function. (34/1050)

Recent evidence suggests that functional diversity of vascular smooth muscle is produced in part by a differential expression of ion channels. The aim of the present study was to examine the role of Ca(2+)-activated K(+) channels (K(Ca) channels) in the expression of smooth muscle cell functional phenotype. We found that smooth muscle cells exhibiting a contractile function express predominantly large-conductance ( approximately 200 pS) K(Ca) (BK) channels. In contrast, proliferative smooth muscle cells express predominantly K(Ca) channels exhibiting a much smaller conductance ( approximately 32 pS). These channels are blocked by low concentrations of charybdotoxin (10 nmol/L) but, unlike BK channels, are insensitive to iberiotoxin (100 nmol/L). To determine the molecular identity of this K(+) channel, we cloned a 1.9-kb cDNA from an immature-phenotype smooth muscle cell cDNA library. The cDNA contains an open reading frame for a 425 amino acid protein exhibiting sequence homology to other K(Ca) channels, in particular with mIK1 and hIK1. Expression in oocytes gives rise to a K(+)-selective channel exhibiting intermediate-conductance (37 pS at -60 mV) and potent activation by Ca(2+) (K(d) 120 nmol/L). Thus, we have cloned and characterized the vascular smooth muscle intermediate-conductance K(Ca) channel (SMIK), which is markedly upregulated in proliferating smooth muscle cells. The differential expression of these K(Ca) channels in functionally distinct smooth muscle cell types suggests that K(Ca) channels play a role in defining the physiological properties of vascular smooth muscle.  (+info)

Hormonal control of protein expression and mRNA levels of the MaxiK channel alpha subunit in myometrium. (35/1050)

Large conductance voltage-dependent and Ca(2+)-modulated K(+) channels play a crucial role in myometrium contractility. Western blots and immunocytochemistry of rat uterine sections or isolated cells show that MaxiK channel protein signals drastically decrease towards the end of pregnancy. Consistent with a transcriptional regulation of channel expression, mRNA levels quantified with the ribonuclease protection assay correlated well with MaxiK protein levels. As a control, Na(+)/K(+)-ATPase protein and RNA levels do not significantly change at different stages of pregnancy. The low numbers of MaxiK channels at the end of pregnancy may facilitate uterine contraction needed for parturition.  (+info)

The role of BK-type Ca2+-dependent K+ channels in spike broadening during repetitive firing in rat hippocampal pyramidal cells. (36/1050)

1. The role of large-conductance Ca2+-dependent K+ channels (BK-channels; also known as maxi-K- or slo-channels) in spike broadening during repetitive firing was studied in CA1 pyramidal cells, using sharp electrode intracellular recordings in rat hippocampal slices, and computer modelling. 2. Trains of action potentials elicited by depolarizing current pulses showed a progressive, frequency-dependent spike broadening, reflecting a reduced rate of repolarization. During a 50 ms long 5 spike train, the spike duration increased by 63.6 +/- 3.4 % from the 1st to the 3rd spike. The amplitude of the fast after-hyperpolarization (fAHP) also rapidly declined during each train. 3. Suppression of BK-channel activity with (a) the selective BK-channel blocker iberiotoxin (IbTX, 60 nM), (b) the non-peptidergic BK-channel blocker paxilline (2-10 microM), or (c) calcium-free medium, broadened the 1st spike to a similar degree ( approximately 60 %). BK-channel suppression also caused a similar change in spike waveform as observed during repetitive firing, and eliminated (occluded) most of the spike broadening during repetitive firing. 4. Computer simulations using a reduced compartmental model with transient BK-channel current and 10 other active ionic currents, produced an activity-dependent spike broadening that was strongly reduced when the BK-channel inactivation mechanism was removed. 5. These results, which are supported by recent voltage-clamp data, strongly suggest that in CA1 pyramidal cells, fast inactivation of a transient BK-channel current (ICT), substantially contributes to frequency-dependent spike broadening during repetitive firing.  (+info)

Two types of voltage-dependent potassium channels in outer hair cells from the guinea pig cochlea. (37/1050)

Cell-attached and cell-free configurations of the patch-clamp technique were used to investigate the conductive properties and regulation of the major K(+) channels in the basolateral membrane of outer hair cells freshly isolated from the guinea pig cochlea. There were two major voltage-dependent K(+) channels. A Ca(2+)-activated K(+) channel with a high conductance (220 pS, P(K)/P(Na) = 8) was found in almost 20% of the patches. The inside-out activity of the channel was increased by depolarizations above 0 mV and increasing the intracellular Ca(2+) concentration. External ATP or adenosine did not alter the cell-attached activity of the channel. The open probability of the excised channel remained stable for several minutes without rundown and was not altered by the catalytic subunit of protein kinase A (PKA) applied internally. The most frequent K(+) channel had a low conductance and a small outward rectification in symmetrical K(+) conditions (10 pS for inward currents and 20 pS for outward currents, P(K)/P(Na) = 28). It was found significantly more frequently in cell-attached and inside-out patches when the pipette contained 100 microM acetylcholine. It was not sensitive to internal Ca(2+), was inhibited by 4-aminopyridine, was activated by depolarization above -30 mV, and exhibited a rundown after excision. It also had a slow inactivation on ensemble-averaged sweeps in response to depolarizing pulses. The cell-attached activity of the channel was increased when adenosine was superfused outside the pipette. This effect also occurred with permeant analogs of cAMP and internally applied catalytic subunit of PKA. Both channels could control the cell membrane voltage of outer hair cells.  (+info)

Activation of Ca(2+)-dependent K(+) channels contributes to rhythmic firing of action potentials in mouse pancreatic beta cells. (38/1050)

We have applied the perforated patch whole-cell technique to beta cells within intact pancreatic islets to identify the current underlying the glucose-induced rhythmic firing of action potentials. Trains of depolarizations (to simulate glucose-induced electrical activity) resulted in the gradual (time constant: 2.3 s) development of a small (<0.8 nS) K(+) conductance. The current was dependent on Ca(2+) influx but unaffected by apamin and charybdotoxin, two blockers of Ca(2+)-activated K(+) channels, and was insensitive to tolbutamide (a blocker of ATP-regulated K(+) channels) but partially (>60%) blocked by high (10-20 mM) concentrations of tetraethylammonium. Upon cessation of electrical stimulation, the current deactivated exponentially with a time constant of 6.5 s. This is similar to the interval between two successive bursts of action potentials. We propose that this Ca(2+)-activated K(+) current plays an important role in the generation of oscillatory electrical activity in the beta cell.  (+info)

Potassium secretion and the regulation of distal nephron K channels. (39/1050)

K-selective channels in the luminal membranes of distal nephron segments form a key pathway for the secretion of K ions into the urine. This process is important to the control of K balance, particularly under conditions of normal or high K intake. This brief review will cover three issues: 1) the identification of apical K channels, 2) the role of these channels in the maintenance of K homeostasis, and 3) the role of aldosterone in this regulatory process. The large amount of literature on renal K transport has been elegantly summarized in a recent review in this journal [G. Giebisch. Am. J. Physiol. 274 (Renal Physiol. 43): F817-F833, 1998]. Here I will focus on a few prominent unsolved problems.  (+info)

Apamin-sensitive conductance mediates the K(+) current response during chemical ischemia in CA3 pyramidal cells. (40/1050)

Pyramidal cells typically respond to ischemia with initial transient hyperpolarization, which may represent a neuroprotective response. To identify the conductance underlying this hyperpolarization in CA3 pyramidal neurons of rat hippocampal organotypic slice cultures, recordings were obtained using the single-electrode voltage-clamp technique. Brief chemical ischemia (2 mM 2-deoxyglucose and 3 mM NaN(3), for 4 min) induced a response mediated by an increase in K(+) conductance. This current was blocked by intracellular application of the Ca(2+) chelator, bis-(o-aminophenoxy)-N,N,N', N'-tetraacetic acid (BAPTA), reduced with low external [Ca(2+)], and inhibited by a selective L-type Ca(2+) channel inhibitor, isradipine, consistent with the activation of a Ca(2+)-dependent K(+) conductance. Experiments with charybdotoxin (10 nM) and tetraethylammonium (TEA; 1 mM), or with the protein kinase C activator, phorbol 12,13-diacetate (PDAc; 3 microM), ruled out an involvement of a large conductance-type or an apamin-insensitive small conductance, respectively. In the presence of apamin (1 microM), however, the outward current was significantly reduced. These results demonstrate that in rat hippocampal CA3 pyramidal neurons an apamin-sensitive Ca(2+)-dependent K(+) conductance is activated in response to brief ischemia generating a pronounced outward current.  (+info)