Myocardial uptake of digoxin in chronically digitalized dogs. (1/15898)

1 The time course of myocardial uptake of digoxin, increase in contractility and changes in myocardial potassium concentration was studied for 90 min following an intravenous digoxin dose to long-term digitalized dogs. 2 Nineteen dogs were investigated by the use of a biopsy technique which allowed sampling before and after administration of digoxin. 3 Ten minutes after administration of digoxin the myocardial concentration increased from 60 to 306 nmol/kg tissue, the myocardial concentration of digoxin was significantly lower (250 nmol/kg tissue) after 30 min and then increased again. 4 The transmural myocardial distribution of digoxin was uniform before and 90 min after administration of digoxin in long-term digitalized dogs but at 10 min after administration, both the subepicardial and the subendocardial concentration of digoxin were significantly lower than that of the mesocardial layer. 5 During the first 10 min the dp/dtmax increased to 135% of the control level. The increase remained unchanged during the rest of the study. 6 Myocardial potassium decreased throughout the study. 7 The M-configuration of the myocardial uptake curve and the non-uniformity of myocardial distribution of digoxin observed at 10 min after administrating digoxin to long-term digitalized dogs indicate that the distribution of myocardial blood flow may be changed during chronic digitalization.  (+info)

Automatic activity in depolarized guinea pig ventricular myocardium. Characteristics and mechanisms. (2/15898)

Membrane potential was changed uniformly in segments, 0.7-1.0 mm long, of guinea pig papillary muscles excised from the right ventricle by using extracellular polarizing current pulses applied across two electrically insulated cf preparations superfused with Tyrode's solution at maximum diastolic membrane potentials ranging from-35.2+/-7.5 (threshold) to +4.0+/-9.2 mV. The average maximum dV/dt of RAD ranged from 17.1 to 18.0 V/sec within a membrane potential range of -40 to +20 mV. Raising extracellular Ca2+ concentration [Ca2+]0 from 1.8 to 6.8 mM, or application of isoproterenol (10(-6)g/ml) enhanced the rate of RAD, but lowering [Ca2+]0 to 0.4 mM or exposure to MnCl2 (6 mM) abolished RAD. RAD were enhanced by lowering extracellular K+ concentration [K+]0 from 5.4 to 1.5 mM. RAD were suppressed in 40% of fibers by raising [K+]0 to 15.4 mM, and in all fibers by raising [K+]0 to 40.4 mM. This suppression was due to increased [K+]0 and not to K-induced depolarization because it persisted when membrane potential was held by means of a conditioning hyperpolarizing puled gradually after maximum repolarization. These observations suggest that the development of RAD in depolarized myocardium is associated with a time-dependent decrease in outward current (probably K current) and with increase in the background inward current, presumably flowing through the slow cha-nel carrying Ca or Na ions, or both.  (+info)

Acute and chronic dose-response relationships for angiotensin, aldosterone, and arterial pressure at varying levels of sodium intake. (3/15898)

We examined the acute and chronic dose-response relationships between intravenously infused angiotensin II (A II) and the resulting changes in arterial pressure and plasma aldosterone concentration at varying levels of sodium intake. Sequential analysis of plasma aldosterone at each A II infusion rate resulted in an acute dose-related increase in plasma aldosterone which was markedly attenuated after the first 24 hours of infusion, the final level being directly related to the dose of A II and inversely related to sodium intake. A II infused at 5,15, and 23 ng/kg per min was associated with an initial increase (2nd to 8th hour) in plasma aldosterone to 2,6, and 9 times control values, respectively, in dogs receiving 40 mEq Na+/day. But, after the 1st day, aldosterone averaged only 1, 1.7, and 3 times control values for the next 2 weeks at the same rates of A II infusion. Dogs receiving 120 mEq Na+/day during A II infusion exhibited only a transient increase in plasma aldosterone during the 1st day. Sustained hypertension developed over a period of a week at all doses of A II at normal and high sodium intake, but did not occur at any dose of A II in sodium-depleted dogs. Increasing sodium intake from 40 to 120 mEq/day resulted in higher levels of hypertension, 125% compared to 140% of ocntrol values for dogs infused with A II, 5.0 ng/kg per min. We conclude that primary angiotensin-induced hypertension need not be associated with increased levels of plasma aldosterone, which appears to remain elevated only with amounts of A II greater than those required to sustain a significant degree of hypertension.  (+info)

The optically determined size of exo/endo cycling vesicle pool correlates with the quantal content at the neuromuscular junction of Drosophila larvae. (4/15898)

According to the current theory of synaptic transmission, the amplitude of evoked synaptic potentials correlates with the number of synaptic vesicles released at the presynaptic terminals. Synaptic vesicles in presynaptic boutons constitute two distinct pools, namely, exo/endo cycling and reserve pools (). We defined the vesicles that were endocytosed and exocytosed during high K+ stimulation as the exo/endo cycling vesicle pool. To determine the role of exo/endo cycling vesicle pool in synaptic transmission, we estimated the quantal content electrophysiologically, whereas the pool size was determined optically using fluorescent dye FM1-43. We then manipulated the size of the pool with following treatments. First, to change the state of boutons of nerve terminals, motoneuronal axons were severed. With this treatment, the size of exo/endo cycling vesicle pool decreased together with the quantal content. Second, we promoted the FM1-43 uptake using cyclosporin A, which inhibits calcineurin activities and enhances endocytosis. Cyclosporin A increased the total uptake of FM1-43, but neither the size of exo/endo cycling vesicle pool nor the quantal content changed. Third, we increased the size of exo/endo cycling vesicle pool by forskolin, which enhances synaptic transmission. The forskolin treatment increased both the size of exo/endo cycling vesicle pool and the quantal content. Thus, we found that the quantal content was closely correlated with the size of exo/endo cycling vesicle pool but not necessarily with the total uptake of FM1-43 fluorescence by boutons. The results suggest that vesicles in the exo/endo cycling pool primarily participate in evoked exocytosis of vesicles.  (+info)

Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons. (5/15898)

Acutely dissociated cell bodies of mouse Purkinje neurons spontaneously fired action potentials at approximately 50 Hz (25 degrees C). To directly measure the ionic currents underlying spontaneous activity, we voltage-clamped the cells using prerecorded spontaneous action potentials (spike trains) as voltage commands and used ionic substitution and selective blockers to isolate individual currents. The largest current flowing during the interspike interval was tetrodotoxin-sensitive sodium current (approximately -50 pA between -65 and -60 mV). Although the neurons had large voltage-dependent calcium currents, the net current blocked by cobalt substitution for calcium was outward at all times during spike trains. Thus, the electrical effect of calcium current is apparently dominated by rapidly activated calcium-dependent potassium currents. Under current clamp, all cells continued firing spontaneously (though approximately 30% more slowly) after block of T-type calcium current by mibefradil, and most cells continued to fire after block of all calcium current by cobalt substitution. Although the neurons possessed hyperpolarization-activated cation current (Ih), little current flowed during spike trains, and block by 1 mM cesium had no effect on firing frequency. The outward potassium currents underlying the repolarization of the spikes were completely blocked by 1 mM TEA. These currents deactivated quickly (<1 msec) after each spike. We conclude that the spontaneous firing of Purkinje neuron cell bodies depends mainly on tetrodotoxin-sensitive sodium current flowing between spikes. The high firing rate is promoted by large potassium currents that repolarize the cell rapidly and deactivate quickly, thus preventing strong hyperpolarization and restoring a high input resistance for subsequent depolarization.  (+info)

Inducible genetic suppression of neuronal excitability. (6/15898)

Graded, reversible suppression of neuronal excitability represents a logical goal of therapy for epilepsy and intractable pain. To achieve such suppression, we have developed the means to transfer "electrical silencing" genes into neurons with sensitive control of transgene expression. An ecdysone-inducible promoter drives the expression of inwardly rectifying potassium channels in polycistronic adenoviral vectors. Infection of superior cervical ganglion neurons did not affect normal electrical activity but suppressed excitability after the induction of gene expression. These experiments demonstrate the feasibility of controlled ion channel expression after somatic gene transfer into neurons and serve as the prototype for a novel generalizable approach to modulate excitability.  (+info)

Identification of the Kv2.1 K+ channel as a major component of the delayed rectifier K+ current in rat hippocampal neurons. (7/15898)

Molecular cloning studies have revealed the existence of a large family of voltage-gated K+ channel genes expressed in mammalian brain. This molecular diversity underlies the vast repertoire of neuronal K+ channels that regulate action potential conduction and neurotransmitter release and that are essential to the control of neuronal excitability. However, the specific contribution of individual K+ channel gene products to these neuronal K+ currents is poorly understood. We have shown previously, using an antibody, "KC, " specific for the Kv2.1 K+ channel alpha-subunit, the high-level expression of Kv2.1 protein in hippocampal neurons in situ and in culture. Here we show that KC is a potent blocker of K+ currents expressed in cells transfected with the Kv2.1 cDNA, but not of currents expressed in cells transfected with other highly related K+ channel alpha-subunit cDNAs. KC also blocks the majority of the slowly inactivating outward current in cultured hippocampal neurons, although antibodies to two other K+ channel alpha-subunits known to be expressed in these cells did not exhibit blocking effects. In all cases the blocking effects of KC were eliminated by previous incubation with a recombinant fusion protein containing the KC antigenic sequence. Together these studies show that Kv2.1, which is expressed at high levels in most mammalian central neurons, is a major contributor to the delayed rectifier K+ current in hippocampal neurons and that the KC antibody is a powerful tool for the elucidation of the role of the Kv2.1 K+ channel in regulating neuronal excitability.  (+info)

Treating the syndrome of inappropriate ADH secretion with isotonic saline. (8/15898)

It has been widely accepted that there is little use for saline treatment in the syndrome of inappropriate secretion of ADH (SIADH). However, having observed that most SIADH patients increased their plasma sodium (PNa) after 2 l isotonic saline over 24 h, we investigated whether urine osmolality or the sum of urinary sodium and potassium (UNa + K) predicted this response, in 17 consecutive patients with chronic SIADH. The initial measure of urinary sodium plus potassium (UNa + K t0) was weakly correlated to the change in PNa (DPNa) after infusion (r = -0.51; p < 0.05), while initial urine osmolality (UOSM t0) was a much better predictor (y = -0.024x + 12.90; r = -0.81; p < 0.001). The lack of predictive value for UNa + K t0 was probably because urine electrolyte concentrations were not maximal for the corresponding initial UOSM. This reflects differences in salt intake between the patients. The theoretical maximal value for UNa + K t0 (th max UNa + K t0) for a given USOM t0, was as good a predictor as UOSM t0 (th max UNa + K vs. DPNa: r = -0.81; p < 0.001). A theoretical model describing the effect of 2 l isotonic saline infusion on DPNa as a function of UNa + K, produced values comparable to those observed in our patients. Only 6/17 patients, those with UOSM > 530 mOsm/kg, had their hyponatraemia aggravated by 2 l isotonic saline. Many SIADH patients have lower UOSM; in most such patients, 2 l of isotonic saline will improve PNa.  (+info)