Development of sex-specific equations for estimating stature of frail elderly Hispanics living in the northeastern United States. (33/4959)

BACKGROUND: The accurate measurement of stature is not possible in many frail elderly persons because of problems affecting their ability to stand straight. In such cases, knee height may be used to estimate stature. OBJECTIVE: This study was designed to explore the applicability of published regression equations to estimate stature of Puerto Rican and other Hispanic elderly persons living in the northeastern United States and to formulate ethnicity-specific equations for these persons. DESIGN: The study subjects (60-92 y of age) included 569 Hispanics and a comparison group of 153 non-Hispanic whites. Equations to estimate stature of Hispanics and Puerto Ricans living in the northeastern United States were developed with regression models in a randomly selected subgroup of the Hispanics. These equations were tested with the remaining Hispanic subgroup. RESULTS: The published equations significantly overestimated stature of our Hispanic subjects. Equations developed for Massachusetts Hispanics and Puerto Ricans provided estimates of stature that did not differ significantly from measured stature. We found further that equations for non-Hispanic whites published in 1985 predicted statures of our relatively low-income, non-Hispanic white subjects better than did newer 1998 equations developed from a national sample. CONCLUSIONS: The stature of elderly Hispanics from the northeastern United States can be estimated by using equations derived from the same population. These, or similar equations, should be used to estimate stature of frail elderly persons for whom standing height cannot be taken accurately. Socioeconomic status as well as ethnicity may affect results when knee height equations are used.  (+info)

Upright posture reduces forearm blood flow early in exercise. (34/4959)

The hypothesis that upright posture could modulate forearm blood flow (FBF) early in exercise was tested in six subjects. Both single (2-s duration) and repeated (1-s work/2-s rest cadence for 12 contractions) handgrip contractions (12 kg) were performed in the supine and 70 degrees head-up tilt (HUT) positions. The arm was maintained at heart level to diminish myogenic effects. Baseline brachial artery diameters were assessed at rest in each position. Brachial artery mean blood velocity (MBV; Doppler) and mean arterial pressure (MAP) (Finapres) were measured continuously to calculate FBF and vascular conductance. MAP was not changed with posture. Antecubital venous pressure (Pv) was reduced in HUT (4.55 +/- 1.3 mmHg) compared with supine (11.3 +/- 1.9 mmHg) (P < 0.01). For the repeated contractions, total excess FBF (TEF) was reduced in the HUT position compared with supine (P < 0.02). With the single contractions, peak FBF, peak vascular conductance, and TEF during 30 s after release of the contraction were reduced in the HUT position compared with supine (P < 0.01). Sympathetic blockade augmented the FBF response to a single contraction in HUT (P < 0.05) and tended to increase this response while supine (P = 0.08). However, sympathetic blockade did not attenuate the effect of HUT on peak FBF and TEF after the single contractions. Raising the arm above heart level while supine, to diminish Pv, resulted in FBF dynamics that were similar to those observed during HUT. Alternatively, lowering the arm while in HUT to restore Pv to supine levels restored the peak FBF and vascular conductance responses, but not TEF response, after a single contraction. It was concluded that upright posture diminishes the hyperemic response early in exercise. The data demonstrate that sympathetic constriction restrains the hyperemic response to a single contraction but does not modulate the postural reduction in postcontraction hyperemia. Therefore, the attenuated blood flow response in the HUT posture was largely related to factors associated with diminished venous pressures and not sympathetic vasoconstriction.  (+info)

Effects of bilateral vestibular lesions on orthostatic tolerance in awake cats. (35/4959)

Previous experiments in anesthetized or decerebrate cats showed that the vestibular system participates in adjusting blood pressure during postural changes. The present experiments tested the hypothesis that removal of vestibular inputs in awake cats would affect orthostatic tolerance. Before the lesion, blood pressure typically remained within 10 mmHg of baseline values during nose-up-pitch body rotations of up to 60 degrees in amplitude. In contrast, bilateral peripheral vestibular lesions altered the pattern of orthostatic responses in all animals, and blood pressure fluctuated >10 mmHg from baseline values during most 60 degrees nose-up tilts in five of six animals. The deficit in correcting blood pressure was particularly large when the animal also was deprived of visual cues indicating position in space. During this testing condition, either a decrease or increase in blood pressure >10 mmHg in magnitude occurred in >80% of tilts. The deficit in adjusting blood pressure after vestibular lesions persisted for only 1 wk, after which time blood pressure remained stable during tilt. These data show that removal of vestibular inputs alters orthostatic responses and are consistent with the hypothesis that vestibular signals are one of several inputs that are integrated to elicit compensatory changes in blood pressure during movement.  (+info)

Measurement of fatigue in industries. (36/4959)

Fatigue of workers is a complex phenomenon resulting from various factors in technically innovated modern industries, and it appears as a feeling of exhaustion, lowering of physiological functions, breakdown of autonomic nervous balance, and decrease in work efficiency. On the other hand industrial fatigue is caused by excessive workload, remarkable alteration in working posture and diurnal and nocturnal rhythms in daily life. Working modes in modern industries have changed from work with the whole body into that with the hands, arms, legs and/or eyes which are parts of the body, and from physical work to mental work. Visual display terminal (VDT) work is one of the most characteristic jobs in the various kinds of workplaces. A large number of fatigue tests have already been adopted, but it is still hard to draw a generalized conclusion as to the method of selecting the most appropriate test battery for a given work load. As apparatus for fatigue measurement of VDT work we have developed VRT (Visual Reaction Test) and the Portable Fatigue Meter. Furthermore, we have presented immune parameters of peripheral blood and splenic T cells for physical fatigue.  (+info)

Shift work-related problems in 16-h night shift nurses (1): Development of an automated data processing system for questionnaires, heart rate, physical activity and posture. (37/4959)

To assess the shift work-related problems associated with a 16-h night shift in a two-shift system, we took the following important factors into consideration; the interaction between circadian rhythms and the longer night shift, the type of morningness and eveningness experienced, the subjective sleep feeling, the subjects' daily behavior, the effectiveness of taking a nap during the long night shift, and finally the effectiveness of using several different kinds of measuring devices. Included among the measuring devices used were a standard questionnaire, repetitive self-assessment of subjective symptoms and daily behavior at short intervals, and a continuous recording of such objective indices as physical activity and heart rate. A potential problem lies in the fact that field studies that use such measures tend to produce a mass of data, and are thus faced with the accompanying technical problem of analyzing such a large amount of data (time, effort and cost). To solve the data analysis problem, we developed an automated data processing system. Through the use of an image scanner with a paper feeder, standard paper, an optical character recognition function and common application software, we were able to analyze a mass of data continuously and automatically within a short time. Our system should prove useful for field studies that produce a large amount of data collected with several different kinds of measuring devices.  (+info)

Reduction of aneurysm clip artifacts on CT angiograms: a technical note. (38/4959)

We describe a head tilt technique for use with CT angiography that reduces beam-hardening artifacts in patients with aneurysm clips. This simple maneuver directs the artifacts away from pertinent anatomy, thus increasing the chances for diagnostic accuracy. No significant changes in the CT angiographic protocol are required, and the maneuver can easily be combined with other artifact-minimizing strategies.  (+info)

Effects of tilt of the gravito-inertial acceleration vector on the angular vestibuloocular reflex during centrifugation. (39/4959)

Effects of tilt of the gravito-inertial acceleration vector on the angular vestibuloocular reflex during centrifugation. Interaction of the horizontal linear and angular vestibuloocular reflexes (lVOR and aVOR) was studied in rhesus and cynomolgus monkeys during centered rotation and off-center rotation at a constant velocity (centrifugation). During centered rotation, the eye velocity vector was aligned with the axis of rotation, which was coincident with the direction of gravity. Facing and back to motion centrifugation tilted the resultant of gravity and linear acceleration, gravito-inertial acceleration (GIA), inducing cross-coupled vertical components of eye velocity. These components were upward when facing motion and downward when back to motion and caused the axis of eye velocity to reorient from alignment with the body yaw axis toward the tilted GIA. A major finding was that horizontal time constants were asymmetric in each monkey, generally being longer when associated with downward than upward cross coupling. Because of these asymmetries, accurate estimates of the contribution of the horizontal lVOR could not be obtained by simply subtracting horizontal eye velocity profiles during facing and back to motion centrifugation. Instead, it was necessary to consider the effects of GIA tilts on velocity storage before attempting to estimate the horizontal lVOR. In each monkey, the horizontal time constant of optokinetic after-nystagmus (OKAN) was reduced as a function of increasing head tilt with respect to gravity. When variations in horizontal time constant as a function of GIA tilt were included in the aVOR model, the rising and falling phases of horizontal eye velocity during facing and back to motion centrifugation were closely predicted, and the estimated contribution of the compensatory lVOR was negligible. Beating fields of horizontal eye position were unaffected by the presence or magnitude of linear acceleration during centrifugation. These conclusions were evaluated in animals in which the low-frequency aVOR was abolished by canal plugging, isolating the contribution of the lVOR. Postoperatively, the animals had normal ocular counterrolling and horizontal eye velocity modulation during off-vertical axis rotation (OVAR), suggesting that the otoliths were intact. No measurable horizontal eye velocity was elicited by centrifugation with angular accelerations +info)

Emergence of postural patterns as a function of vision and translation frequency. (40/4959)

Emergence of postural patterns as a function of vision and translation frequency. We examined the frequency characteristics of human postural coordination and the role of visual information in this coordination. Eight healthy adults maintained balance in stance during sinusoidal support surface translations (12 cm peak to peak) in the anterior-posterior direction at six different frequencies. Changes in kinematic and dynamic measures revealed that both sensory and biomechanical constraints limit postural coordination patterns as a function of translation frequency. At slow frequencies (0.1 and 0.25 Hz), subjects ride the platform (with the eyes open or closed). For fast frequencies (1.0 and 1.25 Hz) with the eyes open, subjects fix their head and upper trunk in space. With the eyes closed, large-amplitude, slow-sway motion of the head and trunk occurred for fast frequencies above 0.5 Hz. Visual information stabilized posture by reducing the variability of the head's position in space and the position of the center of mass (CoM) within the support surface defined by the feet for all but the slowest translation frequencies. When subjects rode the platform, there was little oscillatory joint motion, with muscle activity limited mostly to the ankles. To support the head fixed in space and slow-sway postural patterns, subjects produced stable interjoint hip and ankle joint coordination patterns. This increase in joint motion of the lower body dissipated the energy input by fast translation frequencies and facilitated the control of upper body motion. CoM amplitude decreased with increasing translation frequency, whereas the center of pressure amplitude increased with increasing translation frequency. Our results suggest that visual information was important to maintaining a fixed position of the head and trunk in space, whereas proprioceptive information was sufficient to produce stable coordinative patterns between the support surface and legs. The CNS organizes postural patterns in this balance task as a function of available sensory information, biomechanical constraints, and translation frequency.  (+info)