Robust suppression of afferent-induced excitation in the rat spinal dorsal horn after conditioning low-frequency stimulation. (1/742)

The neuronal plasticity in the spinal dorsal horn induced after conditioning low-frequency stimulation of afferent A fibers, and its relationship with spinal inhibitory networks, was investigated with an optical-imaging method that detects neuronal excitation. High-intensity single-pulse stimulation of the dorsal root activating both A and C fibers evoked an optical response in the dorsal horn in transverse slices of 12- to 25-day-old rat spinal cords stained with a voltage-sensitive dye, RH-482. The optical response, reflecting the net excitation of neuronal elements along the thickness of each slice, was suppressed after a conditioning low-frequency stimulation (0.2-1 Hz for 10 min) to A fibers in the dorsal root. The degree of suppression was largest in the lamina II of the dorsal horn (48% reduction), where the majority of C fibers terminate, and much less in the deeper dorsal horn (5% reduction in laminae III-IV). The onset of suppression was somewhat slow; after the low-frequency stimulation, the magnitude of excitation gradually decreased, reached the maximum effect 30 min after the conditioning, and remained at the suppressed level for >1 h. Suppression was not observed when the low-frequency stimulation was given during a 20-min perfusion with a solution containing an NMDA-receptor antagonist, DL-2-amino-5-phosphonovaleric acid (30 microM). A brief application of an opioid-receptor antagonist, naloxone (0.5 microM), inhibited the induction, but not the maintenance, of low-frequency stimulus-induced suppression. However, treatments with the GABA(A) receptor antagonist bicuculline (1 microM) and the glycine receptor antagonist strychnine (0.3 microM) did not affect suppression induction and maintenance. In conclusion, conditioning low-frequency stimulation to A fibers interferes with the afferent-induced excitation in the dorsal horn. The low-frequency stimulation-induced suppression is maintained by a reduction of glutamatergic excitatory transmissions in the dorsal horn, not by an enhanced inhibition. Activation of the spinal opioid-mediated system by low-frequency stimulation, but not the inhibitory amino acid-mediated system, is necessary to initiate robust suppression. The long-term depression of afferent synaptic efficacy onto excitatory interneurons likely takes the primary role in the robust suppression of neuronal excitation in the dorsal horn.  (+info)

Spinal opioid analgesia: how critical is the regulation of substance P signaling? (2/742)

Although opioids can reduce stimulus-evoked efflux of Substance P (SP) from nociceptive primary afferents, the consequences of this reduction on spinal cord nociceptive processing has not been studied. Rather than assaying SP release, in the present study we examined the effect of opioids on two postsynaptic measures of SP release, Fos expression and neurokinin-1 (NK-1) receptor internalization, in the rat. The functional significance of the latter was first established in in vitro studies that showed that SP-induced Ca(2+) mobilization is highly correlated with the magnitude of SP-induced NK-1 receptor internalization in dorsal horn neurons. Using an in vivo analysis, we found that morphine had little effect on noxious stimulus-evoked internalization of the NK-1 receptor in lamina I neurons. However, internalization was reduced when we coadministered morphine with a dose of an NK-1 receptor antagonist that by itself was without effect. Thus, although opioids may modulate SP release, the residual release is sufficient to exert maximal effects on the target NK-1 receptors. Morphine significantly reduced noxious stimulus-induced Fos expression in lamina I, but the Fos inhibition was less pronounced in neurons that expressed the NK-1 receptor. Taken together, these results suggest that opioid analgesia predominantly involves postsynaptic inhibitory mechanisms and/or presynaptic control of non-SP-containing primary afferent nociceptors.  (+info)

The analgesic action of nitrous oxide is dependent on the release of norepinephrine in the dorsal horn of the spinal cord. (3/742)

BACKGROUND: The authors and others have demonstrated that supraspinal opiate receptors and spinal alpha2 adrenoceptors are involved in the analgesic mechanism for nitrous oxide (N2O). The authors hypothesize that activation of opiate receptors in the periaqueductal gray results in the activation of a descending noradrenergic pathway that releases norepinephrine onto alpha2 adrenoceptors in the dorsal horn of the spinal cord. METHODS: The spinal cord was transected at the level of T3-T4 in rats and the analgesic response to 70% N2O in oxygen was determined by the tail flick latency test. In a separate experiment in rats a dialysis fiber was positioned transversely in the dorsal horn of the spinal cord at the T12 level. The following day, the dialysis fiber was infused with artificial cerebrospinal fluid at a rate of 1.3 microl/min, and the effluent was sampled at 30-min intervals. After a 60-min equilibration period, the animals were exposed to 70% N2O in oxygen. The dialysis experiment was repeated in animals that were pretreated with naltrexone (10 mg/kg, intraperitoneally) before N2O. In a third series, spinal norepinephrine was depleted with n-(2-chloroethyl)-n-ethyl-2-bromobenzylamine (DSP-4), and the analgesic response to 70% N2O in oxygen was determined. RESULTS: The analgesic effect of N2O was prevented by spinal cord transection. After exposure to N2O, there was a fourfold increase in norepinephrine released in the first 30-min period, and norepinephrine was still significantly elevated after 1 h of exposure. The increased norepinephrine release was prevented by previous administration of naltrexone. Depletion of norepinephrine in the spinal cord blocked the analgesic response to N2O. CONCLUSIONS: A descending noradrenergic pathway in the spinal cord links N2O-induced activation of opiate receptors in the periaqueductal gray, with activation of alpha2 adrenoceptors in the spinal cord. N2O-induced release of norepinephrine in the dorsal horn of the spinal cord is blocked by naltrexone, as is the analgesic response. Spinal norepinephrine is necessary for the analgesic response to the N2O.  (+info)

Responses of medullary dorsal horn neurons to corneal stimulation by CO(2) pulses in the rat. (4/742)

Corneal-responsive neurons were recorded extracellularly in two regions of the spinal trigeminal nucleus, subnucleus interpolaris/caudalis (Vi/Vc) and subnucleus caudalis/upper cervical cord (Vc/C1) transition regions, from methohexital-anesthetized male rats. Thirty-nine Vi/Vc and 26 Vc/C1 neurons that responded to mechanical and electrical stimulation of the cornea were examined for convergent cutaneous receptive fields, responses to natural stimulation of the corneal surface by CO(2) pulses (0, 30, 60, 80, and 95%), effects of morphine, and projections to the contralateral thalamus. Forty-six percent of mechanically sensitive Vi/Vc neurons and 58% of Vc/C1 neurons were excited by CO(2) stimulation. The evoked activity of most cells occurred at 60% CO(2) after a delay of 7-22 s. At the Vi/Vc transition three response patterns were seen. Type I cells (n = 11) displayed an increase in activity with increasing CO(2) concentration. Type II cells (n = 7) displayed a biphasic response, an initial inhibition followed by excitation in which the magnitude of the excitatory phase was dependent on CO(2) concentration. A third category of Vi/Vc cells (type III, n = 3) responded to CO(2) pulses only after morphine administration (>1.0 mg/kg). At the Vc/C1 transition, all CO(2)-responsive cells (n = 15) displayed an increase in firing rates with greater CO(2) concentration, similar to the pattern of type I Vi/Vc cells. Comparisons of the effects of CO(2) pulses on Vi/Vc type I units, Vi/Vc type II units, and Vc/C1 corneal units revealed no significant differences in threshold intensity, stimulus encoding, or latency to sustained firing. Morphine (0.5-3.5 mg/kg iv) enhanced the CO(2)-evoked activity of 50% of Vi/Vc neurons tested, whereas all Vc/C1 cells were inhibited in a dose-dependent, naloxone-reversible manner. Stimulation of the contralateral posterior thalamic nucleus antidromically activated 37% of Vc/C1 corneal units; however, no effective sites were found within the ventral posteromedial thalamic nucleus or nucleus submedius. None of the Vi/Vc corneal units tested were antidromically activated from sites within these thalamic regions. Corneal-responsive neurons in the Vi/Vc and Vc/C1 regions likely serve different functions in ocular nociception, a conclusion reflected more by the difference in sensitivity to analgesic drugs and efferent projection targets than by the CO(2) stimulus intensity encoding functions. Collectively, the properties of Vc/C1 corneal neurons were consistent with a role in the sensory-discriminative aspects of ocular pain due to chemical irritation. The unique and heterogeneous properties of Vi/Vc corneal neurons suggested involvement in more specialized ocular functions such as reflex control of tear formation or eye blinks or recruitment of antinociceptive control pathways.  (+info)

Transmission of chronic nociception by spinal neurons expressing the substance P receptor. (5/742)

Substance P receptor (SPR)-expressing spinal neurons were ablated with the selective cytotoxin substance P-saporin. Loss of these neurons resulted in a reduction of thermal hyperalgesia and mechanical allodynia associated with persistent neuropathic and inflammatory pain states. This loss appeared to be permanent. Responses to mildly painful stimuli and morphine analgesia were unaffected by this treatment. These results identify a target for treating persistent pain and suggest that the small population of SPR-expressing neurons in the dorsal horn of the spinal cord plays a pivotal role in the generation and maintenance of chronic neuropathic and inflammatory pain.  (+info)

AMPA receptor calcium permeability, GluR2 expression, and selective motoneuron vulnerability. (6/742)

AMPA receptor-mediated excitotoxicity is proposed to play a major pathogenic role in the selective motoneuron death of amyotrophic lateral sclerosis. Motoneurons have been shown in various models to be more susceptible to AMPA receptor-mediated injury than other spinal neurons. It has been hypothesized that this selective vulnerability of motoneurons is caused by the expression of highly Ca(2+)-permeable AMPA receptors and a complete or relative lack of the AMPA receptor subunit Glu receptor 2 (GluR2). The aim of this study was to quantify the relative Ca(2+) permeability of AMPA receptors and the fractional expression of GluR2 in motoneurons by combining whole-cell patch-clamp electrophysiology and single-cell RT-PCR and to compare these properties with those of dorsal horn neurons. Spinal motoneurons and dorsal horn neurons were isolated from embryonic rats and cultured on spinal astrocytes. As in previous studies, motoneurons were significantly more vulnerable to AMPA and kainate than dorsal horn neurons. However, all motoneurons expressed GluR2 mRNA ( approximately 40% of total AMPA receptor subunit mRNA), and their AMPA receptors had intermediate whole-cell relative Ca(2+) permeability (P(Ca(2+))/P(Cs(+)) approximately 0. 4). AMPA receptor P(Ca(2+))/P(Cs(+)) and the relative abundance of GluR2 varied more widely in dorsal horn neurons than in motoneurons, but the mean values did not differ significantly between the two cell populations. GluR2 was virtually completely edited at the Q/R site both in motoneurons and dorsal horn neurons. These results indicate that the selective vulnerability of motoneurons to AMPA receptor agonists is not determined solely by whole-cell relative Ca(2+) permeability of AMPA receptors.  (+info)

The glial cell line-derived neurotrophic factor family receptor components are differentially regulated within sensory neurons after nerve injury. (7/742)

Glial cell line-derived neurotrophic factor (GDNF) has potent trophic effects on adult sensory neurons after nerve injury and is one of a family of proteins that includes neurturin, persephin, and artemin. Sensitivity to these factors is conferred by a receptor complex consisting of a ligand binding domain (GFRalpha1-GFRalpha4) and a signal transducing domain RET. We have investigated the normal expression of GDNF family receptor components within sensory neurons and the response to nerve injury. In normal rats, RET and GFRalpha1 were expressed in a subpopulation of both small- and large-diameter afferents projecting through the sciatic nerve [60 and 40% of FluoroGold (FG)-labeled cells, respectively]. GFRalpha2 and GFRalpha3 were both expressed principally within small-diameter DRG cells (30 and 40% of FG-labeled cells, respectively). Two weeks after sciatic axotomy, the expression of GFRalpha2 was markedly reduced (to 12% of sciatic afferents). In contrast, the proportion of sciatic afferents that expressed GFRalpha1 increased (to 66% of sciatic afferents) so that virtually all large-diameter afferents expressed this receptor component, and the expression of GFRalpha3 also increased (to 66% of sciatic afferents) so that almost all of the small-diameter afferents expressed this receptor component after axotomy. There was little change in RET expression. The changes in the proportions of DRG cells expressing different receptor components were mirrored by alterations in the total RNA levels within the DRG. The changes in GFRalpha1 and GFRalpha2 expression after axotomy could be largely reversed by treatment with GDNF.  (+info)

Effect of spinal morphine after long-term potentiation of wide dynamic range neurones in the rat. (8/742)

BACKGROUND: Studies have shown that long-term increase in the excitability of single wide dynamic range neurones in the spinal dorsal horn of rats may be induced after tetanic stimulation to the sciatic nerve. This sensory event is possibly an in vivo counterpart of long-term potentiation, described in the brain. This study investigated whether this phenomenon occurs in the halothane-anesthetized rat and whether the antinociceptive effects of spinally administered morphine are altered when tested on the enhanced activity. METHODS: Single unit extracellular recordings were made in three different groups of halothane-anesthetized rats (n = 6 in each group). In group 1, the evoked neuronal responses of wide dynamic range neurones by a single electrical stimulus to the peripheral nerve were recorded every 4 min, for 1 h before (baseline) and for 3 h after brief high-frequency conditioning stimulation of the sciatic nerve. In group 2, morphine was applied onto the spinal cord after long-term potentiation had been established. Increasing concentrations of morphine were added until the C fiber-evoked responses were abolished; this was followed by naloxone reversal. In group 3, the same protocol as in group 2 was used except a waiting period substituted for the electrical conditioning. RESULTS: The C fiber-evoked responses were significantly increased (P < 0.001) after conditioning compared with baseline and those in control animals. Further, significantly higher concentrations of morphine (P = 0.008) were needed to abolish the C fiber-evoked responses in tetanized animals than in control animals. Naloxone reversed the effects of morphine to the predrug potentiated baseline in group 2, showing that opioids do not block the maintenance of spinal long-term potentiation. CONCLUSIONS: Long-term potentiation of C fiber-evoked responses also can be induced in halothane-anesthetized rats, and morphine seems to have less potency during such conditions. These data suggest that long-term potentiation-like mechanisms may underlie some forms of hyperalgesia associated with a reduced effect of morphine.  (+info)