LIS1 is a microtubule-associated phosphoprotein. (9/294)

Lissencephaly, a severe brain malformation, may be caused by mutations in the LIS1 gene. LIS1 encodes a microtubule-associated protein (MAP) that is also part of the enzyme complex, platelet-activating factor acetylhydrolase. LIS1 is also found in a complex with two protein kinases; a T-cell Tat-associated kinase, which contains casein-dependent kinase (CDK) activating kinase (CAK), as well as CAK-inducing activity, and with a spleen protein-tyrosine kinase similar to the catalytic domain of p72syk. As phosphorylation is one of the ways to control cellular localization and protein-protein interactions, we investigated whether LIS1 undergoes this post-translational modification. Our results demonstrate that LIS1 is a developmentally regulated phosphoprotein. Phosphorylated LIS1 is mainly found in the MAP fraction. Phosphoamino acid analysis revealed that LIS1 is phosphorylated on serine residues. Alkaline phosphatase treatment reduced the number of visible LIS1 isoforms. In-gel assays demonstrate a 50-kDa LIS1 kinase that is enriched in microtubule-associated fractions. In vitro, LIS1 was phosphorylated by protein kinase CKII (casein kinase II), but not many other kinases that were tested. We suggest that LIS1 activity may be regulated by phosphorylation.  (+info)

HIV-1 tat transcriptional activity is regulated by acetylation. (10/294)

The human immunodeficiency virus (HIV) trans- activator protein, Tat, stimulates transcription from the viral long-terminal repeats (LTR) through an RNA hairpin element, trans-activation responsive region (TAR). We and others have shown that trans-activator protein (Tat)-associated histone acetyltransferases (TAHs), p300 and p300/CBP-associating factor (PCAF), assist functionally in the activation of chromosomally integrated HIV-1 LTR. Here, we show that p300 and PCAF also directly acetylate Tat. We defined two sites of acetylation located in different functional domains of Tat. p300 acetylated Lys50 in the TAR RNA binding domain, while PCAF acetylated Lys28 in the activation domain of Tat. In support of a functional role for acetylation in vivo, histone deacetylase inhibitor (trichostatin A) synergized with Tat in transcriptional activation of the HIV-1 LTR. Synergism was TAR-dependent and required the intact presence of both Lys28 and Lys50. Mechanistically, acetylation at Lys28 by PCAF enhanced Tat binding to the Tat-associated kinase, CDK9/P-TEFb, while acetylation by p300 at Lys50 of Tat promoted the dissociation of Tat from TAR RNA that occurs during early transcription elongation. These data suggest that acetylation of Tat regulates two discrete and functionally critical steps in transcription, binding to an RNAP II CTD-kinase and release of Tat from TAR RNA.  (+info)

Requirement for a kinase-specific chaperone pathway in the production of a Cdk9/cyclin T1 heterodimer responsible for P-TEFb-mediated tat stimulation of HIV-1 transcription. (11/294)

Tat activation of HIV-1 transcription is mediated by human transcription elongation factor P-TEFb, which interacts with Tat and phosphorylates the C-terminal domain of RNA polymerase II. The catalytic subunit of the P-TEFb complex, Cdk9, has been shown to interact with cyclin T and several other proteins of unknown identity. Consequently, the exact subunit composition of active P-TEFb has not been determined. Here we report the affinity purification and identification of the Cdk9-associated proteins. In addition to forming a heterodimer with cyclin T1, Cdk9 interacted with the molecular chaperone Hsp70 or a kinase-specific chaperone complex, Hsp90/Cdc37, to form two separate chaperone-Cdk9 complexes. Although the Cdk9/cyclin T1 dimer was exceptionally stable and produced slowly in the cell, free and unprotected Cdk9 appeared to be degraded rapidly. Several lines of evidence indicate the heterodimer of Cdk9/cyclin T1 to be the mature, active form of P-TEFb responsible for phosphorylation of the C-terminal domain of RNA polymerase II interaction with the Tat activation domain, and mediation of Tat activation of HIV-1 transcription. Pharmacological inactivation of Hsp90/Cdc37 function by geldanamycin revealed an essential role for the chaperone-Cdk9 complexes in generation of Cdk9/cyclin T1. Our data suggest a previously unrecognized chaperone-dependent pathway involving the sequential actions of Hsp70 and Hsp90/Cdc37 in the stabilization/folding of Cdk9 as well as the assembly of an active Cdk9/cyclin T1 complex responsible for P-TEFb-mediated Tat transactivation.  (+info)

Tat competes with CIITA for the binding to P-TEFb and blocks the expression of MHC class II genes in HIV infection. (12/294)

AIDS and the bare lymphocyte syndrome (BLS) are severe combined immunodeficiencies. BLS results from mutations in genes that regulate the expression of class II major histocompatibility (MHC II) determinants. One of these is the class II transactivator (CIITA). HIV and its transcriptional transactivator (Tat) also block the expression of MHC II genes. By binding to the same surface in the cyclin T1, which together with CDK9 forms the positive transcription elongation factor b (P-TEFb) complex, Tat inhibits CIITA. CIITA can also activate transcription when tethered artificially to RNA. Moreover, a dominant-negative CDK9 protein inhibits the activity of MHC II promoters. Thus, CIITA is a novel cellular coactivator that binds to P-TEFb for the expression of its target genes.  (+info)

Domains in the SPT5 protein that modulate its transcriptional regulatory properties. (13/294)

SPT5 and its binding partner SPT4 regulate transcriptional elongation by RNA polymerase II. SPT4 and SPT5 are involved in both 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB)-mediated transcriptional inhibition and the activation of transcriptional elongation by the human immunodeficiency virus type 1 (HIV-1) Tat protein. Recent data suggest that P-TEFb, which is composed of CDK9 and cyclin T1, is also critical in regulating transcriptional elongation by SPT4 and SPT5. In this study, we analyze the domains of SPT5 that regulate transcriptional elongation in the presence of either DRB or the HIV-1 Tat protein. We demonstrate that SPT5 domains that bind SPT4 and RNA polymerase II, in addition to a region in the C terminus of SPT5 that contains multiple heptad repeats and is designated CTR1, are critical for in vitro transcriptional repression by DRB and activation by the Tat protein. Furthermore, the SPT5 CTR1 domain is a substrate for P-TEFb phosphorylation. These results suggest that C-terminal repeats in SPT5, like those in the RNA polymerase II C-terminal domain, are sites for P-TEFb phosphorylation and function in modulating its transcriptional elongation properties.  (+info)

P-TEFb kinase recruitment and function at heat shock loci. (14/294)

P-TEFb, a heterodimer of the kinase Cdk9 and cyclin T, was isolated as a factor that stimulates formation of productive transcription elongation complexes in vitro. Here, we show that P-TEFb is located at >200 distinct sites on Drosophila polytene chromosomes. Upon heat shock, P-TEFb, like the regulatory factor HSF, is rapidly recruited to heat shock loci, and this recruitment is blocked in an HSF mutant. Yet, HSF binding to DNA is not sufficient to recruit P-TEFb in vivo, and HSF and P-TEFb immunostainings within a heat shock locus are not coincident. Insight to the function of P-TEFb is offered by experiments showing that the direct recruitment of a Gal4-binding domain P-TEFb hybrid to an hsp70 promoter in Drosophila cells is sufficient to activate transcription in the absence of heat shock. Analyses of point mutants show this P-TEFb stimulation is dependent on Cdk9 kinase activity and on Cdk9's interaction with cyclin T. These results, coupled with the frequent colocalization of P-TEFb and the hypophosphorylated form of RNA polymerase II (Pol II) found at promoter-pause sites, support a model in which P-TEFb acts to stimulate promoter-paused Pol II to enter into productive elongation.  (+info)

Binding of Tat to TAR and recruitment of positive transcription elongation factor b occur independently in bovine immunodeficiency virus. (15/294)

Transcriptional transactivators (Tat) from many lentiviruses interact with their cognate transactivation response RNA structures (TAR) to increase rates of elongation rather than initiation of transcription. For several of them, the complex of Tat and a species-specific cyclin T1 must be formed before the binding to TAR can occur with high affinity and specificity. In sharp contrast, Tat from the bovine immunodeficiency virus (BIV) binds to its TAR without the help of the cyclin T1. This binding depends on the upper stem and 5' bulge, but not the central loop in TAR. Moreover, cyclins T1 from different species can mediate effects of this Tat in cells. Unlike the situation with other lentiviruses, Tat transactivation can be rescued simply by linking a heterologous promoter to TAR in permissive cells. Thus, lentiviruses have evolved different strategies to recruit Tat and the positive transcription elongation factor b to their promoters, and interactions between Tat and TAR are independent from those between Tat and the cyclin T1 in BIV.  (+info)

Tat modifies the activity of CDK9 to phosphorylate serine 5 of the RNA polymerase II carboxyl-terminal domain during human immunodeficiency virus type 1 transcription. (16/294)

Tat stimulates human immunodeficiency virus type 1 (HIV-1) transcriptional elongation by recruitment of carboxyl-terminal domain (CTD) kinases to the HIV-1 promoter. Using an immobilized DNA template assay, we have analyzed the effect of Tat on kinase activity during the initiation and elongation phases of HIV-1 transcription. Our results demonstrate that cyclin-dependent kinase 7 (CDK7) (TFIIH) and CDK9 (P-TEFb) both associate with the HIV-1 preinitiation complex. Hyperphosphorylation of the RNA polymerase II (RNAP II) CTD in the HIV-1 preinitiation complex, in the absence of Tat, takes place at CTD serine 2 and serine 5. Analysis of preinitiation complexes formed in immunodepleted extracts suggests that CDK9 phosphorylates serine 2, while CDK7 phosphorylates serine 5. Remarkably, in the presence of Tat, the substrate specificity of CDK9 is altered, such that the kinase phosphorylates both serine 2 and serine 5. Tat-induced CTD phosphorylation by CDK9 is strongly inhibited by low concentrations of 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole, an inhibitor of transcription elongation by RNAP II. Analysis of stalled transcription elongation complexes demonstrates that CDK7 is released from the transcription complex between positions +14 and +36, prior to the synthesis of transactivation response (TAR) RNA. In contrast, CDK9 stays associated with the complex through +79. Analysis of CTD phosphorylation indicates a biphasic modification pattern, one in the preinitiation complex and the other between +36 and +79. The second phase of CTD phosphorylation is Tat-dependent and TAR-dependent. These studies suggest that the ability of Tat to increase transcriptional elongation may be due to its ability to modify the substrate specificity of the CDK9 complex.  (+info)