Loading...
(1/420) Entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages via receptor-mediated endocytosis.

Porcine alveolar macrophages (AMphi) are the dominant cell type that supports the replication of porcine reproductive and respiratory syndrome virus (PRRSV) in vivo and in vitro. In order to determine the characteristics of the virus-receptor interaction, the attachment of PRRSV to cells was examined by using biotinylated virus in a series of flow cytometric assays. PRRSV bound specifically to AMphi in a dose-dependent manner. Binding of PRRSV to AMphi increased gradually and reached a maximum within 60 min at 4 degrees C. By confocal microscopy, it was shown that different degrees of PRRSV binding exist and that entry is by endocytosis. Virus uptake in vesicles is a clathrin-dependent process, as it was blocked by the addition of cytochalasin D and co-localization of PRRSV and clathrin was found. Furthermore, by the use of two weak bases, NH4Cl and chloroquine, it was demonstrated that PRRSV uses a low pH-dependent entry pathway. In the presence of these reagents, input virions accumulated in large vacuoles, indicating that uncoating was prevented. These results indicate that PRRSV entry into AMphi involves attachment to a specific virus receptor(s) followed by a process of endocytosis, by which virions are taken into the cell within vesicles by a clathrin-dependent pathway. A subsequent drop in pH is required for proper virus replication.  (+info)

(2/420) A modified immunoperoxidase assay for detection of antibody porcine reproductive and respiratory syndrome (PRRS) virus in swine sera.

MARC-145 cell monolayers infected with PRRS virus were fixed in 3% neutral buffered formalin and embedded in paraffin. The sections were stained by avidin-biotin complex immunoperoxidase (ABC) method. Test sera were applied to sections as primary antibodies. The positive reactions were detected by ABC method and indirect immunofluorescent assay (IFA). There was good correlation between ABC and IFA, and the titers in ABC were higher than those in IFA. The present results indicate that the immunohistochemical staining is a useful test for the detection and quantitation of PRRS virus antibody in swine sera as well as IFA.  (+info)

(3/420) The evolution of porcine reproductive and respiratory syndrome virus: quasispecies and emergence of a virus subpopulation during infection of pigs with VR-2332.

GP5, the principal envelope glycoprotein of porcine reproductive and respiratory syndrome virus (PRRSV), contains a hypervariable region within the ectodomain which is responsible for generating diversity in field isolates. The purpose of this study was to gain insight into the possible origin of this diversity by following GP5 sequence changes in pigs exposed to PRRSV strain VR-2332 in utero. A region of the PRRS virus genome containing portions of ORF4 and ORF5 was amplified directly from tissues of infected pigs from birth to 132 days of age. We observed the emergence of a new PRRSV population, identified by a single nucleotide change in the ectodomain. The Asp to Asn change at amino acid 34 was also found as a minor component in pigs that expressed the wild-type sequence. The results from this study suggest that the variability in the ectodomain of ORF5 is the result of positive or negative selection, of which the mechanism remains to be determined.  (+info)

(4/420) Molecular responses of macrophages to porcine reproductive and respiratory syndrome virus infection.

The detailed mechanism(s) by which porcine reproductive and respiratory syndrome virus (PRRSV) impairs alveolar Mo homeostasis and function remains to be elucidated. We used differential display reverse-transcription PCR (DDRT-PCR) to identify molecular genetic changes within PRRSV-infected Mo over a 24 h post infection period. From over 4000 DDRT-PCR amplicons examined, 19 porcine-derived DDRT-PCR products induced by PRRSV were identified and cloned. Northern blot analysis confirmed that four gene transcripts were induced during PRRSV infection. PRRSV attachment and penetration alone did not induce these gene transcripts. DNA sequence revealed that one PRRSV-induced expressed sequence tag (EST) encoded porcine Mx1, while the remaining 3 clones represented novel ESTs. A full-length cDNA clone for EST G3V16 was obtained from a porcine blood cDNA library. Sequence data suggests that it encodes an ubiquitin-specific protease (UBP) that regulates protein trafficking and degradation. In pigs infected in vivo, upregulated transcript levels were observed for Mx1 and Ubp in lung and tonsils, and for Mx1 in tracheobronchial lymph node (TBLN). These tissues correspond to sites for PRRSV persistence, suggesting that the Mx1 and Ubp genes may play important roles in clinical disease during PRRSV infection.  (+info)

(5/420) Genetic, geographical and temporal variation of porcine reproductive and respiratory syndrome virus in Illinois.

Porcine reproductive and respiratory syndrome virus (PRRSV) ORF5 gene sequences were generated by RT-PCR from 55 field isolates collected in Illinois and eastern Iowa. Spatial and temporal patterns of genetic variation in the virus were examined on a local geographical scale in order to test the hypothesis that the genetic similarity of PRRSV isolates (measured as their percentage pairwise ORF5 nucleotide similarity) was positively correlated with their geographical proximity. Levels of genetic variability in the Illinois/eastern Iowa PRRSV sample were similar to levels of variability seen across broader geographical regions within North America. The genetic similarity of isolates did not correlate with their geographical distance. These results imply that the movement of PRRSV onto farms does not generally occur via distance-limited processes such as wind or wildlife vectors, but more typically occurs via the long-distance transport of animals or semen. Genetic distances between PRRSV isolates collected from the same farms at different times increased as the time separating the collection events increased. This result implies rapid movement of new genetic types of PRRSV into and out of farms. PRRSV ORF5 displayed a pattern of third-codon-position diversity bias that was not evident in a geographically comparable sample of pseudorabies virus (a swine alphaherpesvirus) gC gene sequences. This result provides evidence that PRRSV ORF5 is experiencing stabilizing selection against structural novelty. Despite high genetic variability at all geographical levels, PRRSV ORF5 nevertheless contained potentially antigenic regions that were invariant at the amino acid level. These regions should make effective vaccine targets if they prove to be immunogenic.  (+info)

(6/420) Changes of leukocyte phenotype and function in the broncho-alveolar lavage fluid of pigs infected with porcine reproductive and respiratory syndrome virus: a role for CD8(+) cells.

Porcine reproductive and respiratory virus (PRRSV) primarily infects and destroys alveolar macrophages of the pig. The aim of the present study was to characterize the changes of leukocyte populations in the broncho-alveolar lavage fluid (BALF) of PRRSV-infected pigs. Piglets were inoculated intranasally with PRRSV strain LV ter Huurne. On various days post-infection the piglets were sacrificed and the lungs removed, washed semi-quantitatively and analysed by flow cytometry. The total number of recovered BALF cells increased approximately 10 times between day 10 and day 21 of infection and decreased thereafter. The number of small low-autofluorescent cells (SLAC), i.e. lymphocytic and monocytic cells, increased very strongly from day 2 until day 21 of infection; in contrast, the number of large highly autofluorescent cells (LHAC), i.e. mostly macrophages, remained constant until day 14 of infection, increased slightly on day 21 and then decreased. On day 21 of infection in specific-pathogen-free piglets approximately 60% of the SLAC consisted of CD2(+)CD8(+)CD4(-)gammadeltaTCR(-) cells, which were partly CD8(+)CD6(+) and partly CD8(+)CD6(-). These phenotypes correspond to that of cytotoxic T-cells and natural killer cells respectively. From these results we can conclude that during a PRRSV infection the total number of BALF cells increases mainly due to an influx of lymphocytic cells with a cytolytic phenotype.  (+info)

(7/420) Effects of chlorine, iodine, and quaternary ammonium compound disinfectants on several exotic disease viruses.

The effects of three representative disinfectants, chlorine (sodium hypochlorite), iodine (potassium tetraglicine triiodide), and quaternary ammonium compound (didecyldimethylammonium chloride), on several exotic disease viruses were examined. The viruses used were four enveloped viruses (vesicular stomatitis virus, African swine fever virus, equine viral arteritis virus, and porcine reproductive and respiratory syndrome virus) and two non-enveloped viruses (swine vesicular disease virus (SVDV) and African horse sickness virus (AHSV)). Chlorine was effective against all viruses except SVDV at concentrations of 0.03% to 0.0075%, and a dose response was observed. Iodine was very effective against all viruses at concentrations of 0.015% to 0.0075%, but a dose response was not observed. Quaternary ammonium compound was very effective in low concentration of 0.003% against four enveloped viruses and AHSV, but it was only effective against SVDV with 0.05% NaOH. Electron microscopic observation revealed the probable mechanism of each disinfectant. Chlorine caused complete degeneration of the viral particles and also destroyed the nucleic acid of the viruses. Iodine destroyed mainly the inner components including nucleic acid of the viruses. Quaternary ammonium compound induced detachment of the envelope of the enveloped viruses and formation of micelle in non-enveloped viruses. According to these results, chlorine and iodine disinfectants were quite effective against most of the viruses used at adequately high concentration. The effective concentration of quaternary ammonium compound was the lowest among the disinfectants examined.  (+info)

(8/420) Experimental reinfection with homologous porcine reproductive and respiratory syndrome virus in SPF pigs.

The present examination was conducted to determine if the pigs infected with one strain of porcine reproductive and respiratory syndrome virus (PRRSV) would be protected against a subsequent homologous virus challenge. Sixteen 4-week-old SPF pigs were assigned to 2 experimental groups A and B. The pigs in group A were inoculated with 10(6.5) TCID50 of PRRSV by intranasal route. On 77 days post-inoculation (PI), pigs in groups A and B were similarly inoculated with same virus. After the secondary inoculation, the pigs in group A didn't show any clinical sign including pyrexia and reduction of white blood cell (WBC) number. Viremia was detected only on 3 days PI with low virus titer and any virus was not recovered from serum and tissues at the time of necropsy on 14 or 28 days PI. In contrast, pigs in group B showed pyrexia for 14 days and reduction of WBC number on 3 days PI. Viremia was detected between 3 and 28 days PI, and virus was isolated from several tissues of all pigs. These results indicate that previous exposure to PRRSV can prevent development of clinical signs and reduce virus proliferation in pigs after subsequent infection with the homologous PRRSV.  (+info)