Three energy variables predict ant abundance at a geographical scale. (33/3450)

Energy theory posits three processes that link local abundance of ectotherms to geographical gradients in temperature. A survey of 49 New World habitats found a two order of magnitude span in the abundance (nests m(-2)) of ground nesting ants (Formicidae). Abundance increased with net primary productivity (r2=0.55), a measure of the baseline supply of harvestable energy. Abundance further increased with mean temperature (r2=0.056), a constraint on foraging activity for this thermophilic taxon. Finally for a given mean temperature, ants were more abundant in seasonal sites with longer, colder winters (r2 = 0.082) that help ectotherm taxa sequester harvested energy in non-productive months. All three variables are currently changing on a global scale. All should be useful in predicting biotic responses to climate change.  (+info)

The role of population size, pleiotropy and fitness effects of mutations in the evolution of overlapping gene functions. (34/3450)

Sheltered from deleterious mutations, genes with overlapping or partially redundant functions may be important sources of novel gene functions. While most partially redundant genes originated in gene duplications, it is much less clear why genes with overlapping functions have been retained, in some cases for hundreds of millions of years. A case in point is the many partially redundant genes in vertebrates, the result of ancient gene duplications in primitive chordates. Their persistence and ubiquity become surprising when it is considered that duplicate and original genes often diversify very rapidly, especially if the action of natural selection is involved. Are overlapping gene functions perhaps maintained because of their protective role against otherwise deleterious mutations? There are two principal objections against this hypothesis, which are the main subject of this article. First, because overlapping gene functions are maintained in populations by a slow process of "second order" selection, population sizes need to be very high for this process to be effective. It is shown that even in small populations, pleiotropic mutations that affect more than one of a gene's functions simultaneously can slow the mutational decay of functional overlap after a gene duplication by orders of magnitude. Furthermore, brief and transient increases in population size may be sufficient to maintain functional overlap. The second objection regards the fact that most naturally occurring mutations may have much weaker fitness effects than the rather drastic "knock-out" mutations that lead to detection of partially redundant functions. Given weak fitness effects of most mutations, is selection for the buffering effect of functional overlap strong enough to compensate for the diversifying force exerted by mutations? It is shown that the extent of functional overlap maintained in a population is not only independent of the mutation rate, but also independent of the average fitness effects of mutation. These results are discussed with respect to experimental evidence on redundant genes in organismal development.  (+info)

The impact of supplementation in winter-run chinook salmon on effective population size. (35/3450)

Supplementation of young raised at a protected site, such as a hatchery, may influence the effective population size of an endangered species. A supplementation program for the endangered winter-run chinook salmon from the Sacramento River, California, has been releasing fish since 1991. A breeding protocol, instituted in 1992, seeks to maximize the effective population size from the captive spawners by equaling their contributions to the released progeny. As a result, the releases in 1994 and 1995 appear not to have decreased the overall effective population size and may have increased it somewhat. However, mistaken use of non-winter-run chinook spawners resulted in artificial crosses between runs with a potential reduction in effective population size, and imprinting of the released fish on Battle Creek, the site of the hatchery, resulted in limiting the contribution of the released fish to the target mainstem population. Rapid genetic analysis of captured spawners and a new rearing facility on the Sacramento River should alleviate these problems and their negative effect on the effective population size in future years.  (+info)

Effective population size may limit the power of laboratory experiments to demonstrate sympatric and parapatric speciation. (36/3450)

Laboratory experiments designed to elucidate the mechanisms of sympatric and parapatric speciation may have been handicapped by too small population sizes, although this possibility has seldom been discussed. In this paper we review the published records of sympatric and parapatric speciation experiments to test the relative importance of selection intensity applied, duration of experiment and effective population size. Our results show that among these factors only effective population size has had a general effect on the generation of assortative mating. Reduced interbreeding is less likely to develop in small populations where the selection process often seems to have been opposed by inbreeding depression or loss of genetic variation. This study demonstrates that the experimental evidence frequently used as an argument against sympatric and parapatric speciation models is not as strong as previously believed.  (+info)

Density-dependent decline of host abundance resulting from a new infectious disease. (37/3450)

Although many new diseases have emerged within the past 2 decades [Cohen, M. L. (1998) Brit. Med. Bull. 54, 523-532], attributing low numbers of animal hosts to the existence of even a new pathogen is problematic. This is because very rarely does one have data on host abundance before and after the epizootic as well as detailed descriptions of pathogen prevalence [Dobson, A. P. & Hudson, P. J. (1985) in Ecology of Infectious Diseases in Natural Populations, eds. Grenfell, B. T. & Dobson, A. P. (Cambridge Univ. Press, Cambridge, U.K.), pp. 52-89]. Month by month we tracked the spread of the epizootic of an apparently novel strain of a widespread poultry pathogen, Mycoplasma gallisepticum, through a previously unknown host, the house finch, whose abundance has been monitored over past decades. Here we are able to demonstrate a causal relationship between high disease prevalence and declining house finch abundance throughout the eastern half of North America because the epizootic reached different parts of the house finch range at different times. Three years after the epizootic arrived, house finch abundance stabilized at similar levels, although house finch abundance had been high and stable in some areas but low and rapidly increasing in others. This result, not previously documented in wild populations, is as expected from theory if transmission of the disease was density dependent.  (+info)

Malaria vectors in the Brazilian amazon: Anopheles of the subgenus Nyssorhynchus. (38/3450)

Various species of Anopheles (Nyssorhynchus) were studied in the Amazon with the objective of determining their importance as malaria vectors. Of the 33 known Anopheles species occurring in the Amazon, only 9 were found to be infected with Plasmodium. The different species of this subgenus varied both in diversity and density in the collection areas. The populations showed a tendency towards lower density and diversity in virgin forest than in areas modified by human intervention. The principal vector, An. darlingi, is anthropophilic with a continuous activity cycle lasting the entire night but peaking at sunset and sunrise. These species (Nyssorhynchus) are peridomiciliary, entering houses to feed on blood and immediately leaving to settle on nearby vegetation. Anopheles nuneztovari proved to be zoophilic, crepuscular and peridomiciliary. These habits may change depending on a series of external factors, especially those related to human activity. There is a possibility that sibling species exist in the study area and they are being studied with reference to An. darlingi, An. albitarsis and An. nuneztovari. The present results do not suggest the existence of subpopulations of An. darlingi in the Brazilian Amazon.  (+info)

Aedes aegypti in Tahiti and Moorea (French Polynesia): isoenzyme differentiation in the mosquito population according to human population density. (39/3450)

Genetic differences at five polymorphic isoenzyme loci were analyzed by starch gel electrophoresis for 28 Aedes aegypti samples. Considerable (i.e., high Fst values) and significant (i.e., P values >10(-4)) geographic differences were found. Differences in Ae. aegypti genetic structure were related to human population densities and to particularities in mosquito ecotopes in both Tahiti and Moorea islands. In highly urbanized areas (i.e., the Papeete agglomeration), mosquitoes were highly structured. Recurrent extinction events consecutive to insecticidal treatments during dengue outbreaks tend to differentiate mosquito populations. In less populated zones (i.e., the east coast of Moorea and Tahiti), differences in ecotope characteristics could explain the lack of differentiation among mosquitoes from rural environments such as the east coast of Tahiti where natural breeding sites predominate. When the lowest populated zones such as Tahiti Iti and the west coast of Moorea are compared, mosquito are less differentiated in Moorea. These results will be discussed in relation to the recent findings of variation in mosquito infection rates for dengue-2 virus.  (+info)

A spatial statistical approach to malaria mapping. (40/3450)

BACKGROUND: Good maps of malaria risk have long been recognized as an important tool for malaria control. The production of such maps relies on modelling to predict the risk for most of the map, with actual observations of malaria prevalence usually only known at a limited number of specific locations. Estimation is complicated by the fact that there is often local variation of risk that cannot be accounted for by the known covariates and because data points of measured malaria prevalence are not evenly or randomly spread across the area to be mapped. METHOD: We describe, by way of an example, a simple two-stage procedure for producing maps of predicted risk: we use logistic regression modelling to determine approximate risk on a larger scale and we employ geo-statistical ('kriging') approaches to improve prediction at a local level. Malaria prevalence in children under 10 was modelled using climatic, population and topographic variables as potential predictors. After the regression analysis, spatial dependence of the model residuals was investigated. Kriging on the residuals was used to model local variation in malaria risk over and above that which is predicted by the regression model. RESULTS: The method is illustrated by a map showing the improvement of risk prediction brought about by the second stage. The advantages and shortcomings of this approach are discussed in the context of the need for further development of methodology and software.  (+info)