Loading...
(1/4132) Repertoire of human antibodies against the polysaccharide capsule of Streptococcus pneumoniae serotype 6B.

We examined the repertoire of antibodies to Streptococcus pneumoniae 6B capsular polysaccharide induced with the conventional polysaccharide vaccine in adults at the molecular level two ways. In the first, we purified from the sera of seven vaccinees antipneumococcal antibodies and determined their amino acid sequences. Their VH regions are mainly the products of VH3 family genes (candidate genes, 3-23, 3-07, 3-66, and 3-74), but the product of a VH1 family gene (candidate gene, 1-03) is occasionally used. All seven individuals have small amounts of polyclonal kappa+ antibodies (Vkappa1 to Vkappa4 families), although kappa+ antibodies are occasionally dominated by antibodies formed with the product of the A27 Vkappa gene. In contrast, lambda+ anti-6B antibodies are dominated by the antibodies derived from one of 3 very similar Vlambda2 family genes (candidate genes, 2c, 2e, and 2a2) and Clambda1 gene product. The Vlambda2(+) antibodies express the 8.12 idiotype, which is expressed on anti-double-stranded-DNA antibodies. In one case, Vlambda is derived from a rarely expressed Vlambda gene, 10a. In the second approach, we studied a human hybridoma (Dob1) producing anti-6B antibody. Its VH region sequence is closely related to those of the 3-15 VH gene (88% nucleotide homology) and JH4 (92% homology). Its VL region is homologous to the 2a2 Vlambda2 gene (91%) and Jlambda1/Clambda1. Taken together, the V region of human anti-6B antibodies is commonly formed by a VH3 and a Vlambda2 family gene product.  (+info)

(2/4132) Isolation and chemical characterization of a capsular polysaccharide antigen shared by clinical isolates of Enterococcus faecalis and vancomycin-resistant Enterococcus faecium.

Enterococci are a common cause of serious infections, especially in newborns, severely immunocompromised patients, and patients requiring intensive care. To characterize enterococcal surface antigens that are targets of opsonic antibodies, rabbits were immunized with various gentamicin-killed Enterococcus faecalis strains, and immune sera were tested in an opsonophagocytic assay against a selection of clinical isolates. Serum raised against one strain killed the homologous strain (12030) at a dilution of 1:5,120 and mediated opsonic killing of 33% of all strains tested. In addition, this serum killed two (28%) of seven vancomycin-resistant Enterococcus faecium strains. Adsorption of sera with the homologous strain eliminated killing activity. The adsorbing antigens were resistant to treatment with proteinase K and to boiling for 1 h, but were susceptible to treatment with sodium periodate, indicating that the antigen inducing opsonic activity is a polysaccharide. Antibodies in immune rabbit sera reacted with a capsule-like structure visualized by electron microscopy both on the homologous E. faecalis strain and on a vancomycin-resistant E. faecium strain. The capsular polysaccharides from E. faecalis 12030 and E. faecium 838970 were purified, and chemical and structural analyses indicated they were identical glycerol teichoic acid-like molecules with a carbohydrate backbone structure of 6-alpha-D-glucose-1-2 glycerol-3-PO4 with substitution on carbon 2 of the glucose with an alpha-2-1-D-glucose residue. The purified antigen adsorbed opsonic killing activity from immune rabbit sera and elicited high titers of antibodies (when used to immunize rabbits) that both mediated opsonic killing of bacteria and bound to a capsule-like structure visualized by electron microscopy. These results indicate that approximately one-third of a sample of 15 E. faecalis strains and 7 vancomycin-resistant E. faecium strains possess shared capsular polysaccharides that are targets of opsonophagocytic antibodies and therefore are potential vaccine candidates.  (+info)

(3/4132) Marmoset species variation in the humoral antibody response: in vivo and in vitro studies.

A comparison of the in vivo and in vitro antibody response capabilities of two marmoset species, Saguinus fuscicollis and Saguinus oedipus oedipus, revealed the former to be superior in elaborating humoral antibody. In vivo challenges with Escherichia coli lipopolysaccharide (LPS) and Salmonella typhi flagella consistently yielded higher antibody titres in S. fuscicollis; indeed, with LPS antigen, multiple inoculations of S.o. oedipus marmosets led ultimately to a decrease in antibody formation, in contrast to the anamnestic response of S. fuscicollis. This species differential in immune competence was also suggested in the in vitro stimulation of peripheral blood leucocytes (PBL) and spleen cells with sheep red blood cells (RBC). None of 55 S.o. oedipus PBL cultures and 49 of 89 (55%) S. fuscicollis cultures responded to the test antigen. A similar differential in response to sheep RBC was noted with the spleen cells of each species, although this report contrasts the antibody-forming potential of two marmoset species, a comparison of the immunological response profile of marmosets to those of other laboratory animals challenged with similar antigens suggests these primates may be relatively incompetent. The possible relationship between the haemopoietic chimerism of marmosets and a diminished immune competence is discussed.  (+info)

(4/4132) Regulated exopolysaccharide production in Myxococcus xanthus.

Myxococcus xanthus fibrils are cell surface-associated structures composed of roughly equal amounts of polysaccharide and protein. The level of M. xanthus polysaccharide production under different conditions in the wild type and in several mutants known to have alterations in fibril production was investigated. Wild-type exopolysaccharide increased significantly as cells entered the stationary phase of growth or upon addition of Ca2+ to growing cells, and the polysaccharide-induced cells exhibited an enhanced capacity for cell-cell agglutination. The activity of the key gluconeogenic pathway enzyme phosphoenolpyruvate carboxykinase (Pck) also increased under these conditions. Most fibril-deficient mutants failed to produce polysaccharide in a stationary-phase- or Ca2+-dependent fashion. However, regulation of Pck activity was generally unimpaired in these mutant strains. In an stk mutant, which overproduces fibrils, polysaccharide production and Pck activity were constitutively high under the conditions tested. Polysaccharide production increased in most fibril-deficient strains when an stk mutant allele was present, indicating that these fibril-deficient mutants retained the basic cellular components required for fibril polysaccharide production. In contrast to other divalent cations tested, Sr2+ effectively replaced Ca2+ in stimulating polysaccharide production, and either Ca2+ or Sr2+ was required for fruiting-body formation by wild-type cells. By using transmission electron microscopy of freeze-substituted log-phase wild-type cells, fibril material was observed as a cell surface-associated layer of uniform thickness composed of filaments with an ordered structure.  (+info)

(5/4132) Tn5-induced and spontaneous switching of Sinorhizobium meliloti to faster-swarming behavior.

Tn5 mutants of Sinorhizobium meliloti RMB7201 which swarmed 1.5 to 2. 5 times faster than the parental strain in semisolid agar, moist sand, and viscous liquid were identified. These faster-swarming (FS) mutants outgrew the wild type 30- to 40-fold within 2 days in mixed swarm colonies. The FS mutants survived and grew as well as or better than the wild type under all of the circumstances tested, except in a soil matrix subjected to air drying. Exopolysaccharide (EPS) synthesis was reduced in each of the FS mutants when they were grown on defined succinate-nitrate medium, but the extent of reduction was different for each. It appears that FS behavior likely results from a modest, general derepression of motility involving an increased proportion of motile and flagellated cells and an increased average number of flagella per cell and increased average flagellar length. Spontaneous FS variants of RMB7201 were obtained at a frequency of about 1 per 10,000 to 20,000 cells by either enrichment from the periphery of swarm colonies or screening of colonies for reduced EPS synthesis on succinate-nitrate plates. The spontaneous FS variants and Tn5 FS mutants were symbiotically effective and competitive in alfalfa nodulation. Reversion of FS variants to wild-type behavior was sporadic, indicating that reversion is affected by unidentified environmental factors. Based on phenotypic and molecular differences between individual FS variants and mutants, it appears that there may be multiple genetic configurations that result in FS behavior in RMB7201. The facile isolation of spontaneous FS variants of Escherichia coli and Pseudomonas aeruginosa indicates that switching to FS behavior may be fairly common among bacterial species. The substantial growth advantage of FS mutants and variants wherever nutrient gradients exist suggests that switching to FS forms may be an important behavioral adaptation in natural environments.  (+info)

(6/4132) Maternal immunization.

Maternal immunization can enhance passive immunity of infants to pathogens that cause life-threatening illnesses. In most instances, immunization during pregnancy will provide important protection for the woman as well as for her offspring. The tetanus toxoid and influenza vaccines are examples of vaccines that provide a double benefit. Other vaccines under evaluation include those for respiratory syncytial virus, pneumococci, group B streptococci, and Haemophilus influenzae type b. Although most IgG antibody crosses the placenta in the third trimester, the process is time-dependent, dictating that immunization should be accomplished ideally at least 6 weeks prior to delivery. IgG1 antibodies are transferred preferentially. Maternal immunization has not interfered with active immunization of the infant. Inactivated vaccines administered in the third trimester of pregnancy pose no known risk to the woman or to her fetus.  (+info)

(7/4132) Transfection of human macrophages by lipoplexes via the combined use of transferrin and pH-sensitive peptides.

The crucial function of macrophages in a variety of biological processes and pathologies render these cells important targets for gene therapeutic interventions. Commonly used synthetic gene delivery vectors have not been successful in transfecting these non-dividing cells. A combination strategy involving cationic liposomes to condense and carry DNA, transferrin to facilitate cellular uptake, and the pH-sensitive peptide GALA to promote endosome destabilization, resulted in significant expression of a luciferase gene. Transfection of macrophages was dependent on the degree of differentiation of the cells. The quaternary complexes of cationic liposomes, DNA, transferrin, and GALA exhibited a net negative charge, which may obviate a limitation of cationic synthetic vectors in vivo. The lack of cytotoxicity and the expected lack of immunogenicity of these complexes may render them useful for gene delivery to macrophages in vivo.  (+info)

(8/4132) Altered expression profile of the surface glycopeptidolipids in drug-resistant clinical isolates of Mycobacterium avium complex.

Members of the Mycobacterium avium complex are the most frequently encountered opportunistic bacterial pathogens among patients in the advanced stage of AIDS. Two clinical isolates of the same strain, numbers 397 and 417, were obtained from an AIDS patient with disseminated M. avium complex infection before and after treatment with a regimen of clarithromycin and ethambutol. To identify the biochemical consequence of drug treatment, the expression and chemical composition of their major cell wall constituents, the arabinogalactan, lipoarabinomannan, and the surface glycopeptidolipids (GPL), were critically examined. Through thin layer chromatography, mass spectrometry, and chemical analysis, it was found that the GPL expression profiles differ significantly in that several apolar GPLs were overexpressed in the clinically resistant 417 isolate at the expense of the serotype 1 polar GPL, which was the single predominant band in the ethambutol-susceptible 397 isolate. Thus, instead of additional rhamnosylation on the 6-deoxytalose (6-dTal) appendage to give the serotype 1-specific disaccharide hapten, the accumulation of this nonextended apolar GPL probably provided more precursor substrate available for further nonsaccharide substitutions including a higher degree of O-methylation to give 3-O-Me-6-dTal and the unusual 4-O-sulfation on 6-dTal. Further data showed that this alteration effectively neutralized ethambutol, which is known to inhibit arabinan synthesis. Thus, in contrast with derived Emb-resistant mutants of Mycobacterium smegmatis or Mycobacterium tuberculosis, which are devoid of a surface GPL layer, the lipoarabinomannan from resistant 417 isolate grown in the presence of this drug was not apparently truncated.  (+info)