Non-structural proteins 2 and 3 interact to modify host cell membranes during the formation of the arterivirus replication complex. (17/193)

The replicase polyproteins of equine arteritis virus (EAV; family Arteriviridae, order Nidovirales) are processed by three viral proteases to yield 12 non-structural proteins (nsps). The nsp2 and nsp3 cleavage products have previously been found to interact, a property that allows nsp2 to act as a co-factor in the processing of the downstream part of the polyprotein by the nsp4 protease. Remarkably, upon infection of Vero cells, but not of BHK-21 or RK-13 cells, EAV nsp2 is now shown to be subject to an additional, internal, cleavage. In Vero cells, approximately 50% of nsp2 (61 kDa) was cleaved into an 18 kDa N-terminal part and a 44 kDa C-terminal part, most likely by a host cell protease that is absent in BHK-21 and RK-13 cells. Although the functional consequences of this additional processing step are unknown, the experiments in Vero cells revealed that the C-terminal part of nsp2 interacts with nsp3. Most EAV nsps localize to virus-induced double-membrane structures in the perinuclear region of the infected cell, where virus RNA synthesis takes place. It is now shown that, in an expression system, the co-expression of nsp2 and nsp3 is both necessary and sufficient to induce the formation of double-membrane structures that strikingly resemble those found in infected cells. Thus, the nsp2 and nsp3 cleavage products play a crucial role in two processes that are common to positive-strand RNA viruses that replicate in mammalian cells: controlled proteolysis of replicase precursors and membrane association of the virus replication complex.  (+info)

Analysis of the aphthovirus 2A/2B polyprotein 'cleavage' mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal 'skip'. (18/193)

The 2A region of the aphthovirus foot-and-mouth disease virus (FMDV) polyprotein is only 18 aa long. A 'primary' intramolecular polyprotein processing event mediated by 2A occurs at its own C terminus. FMDV 2A activity was studied in artificial polyproteins in which sequences encoding reporter proteins flanked the 2A sequence such that a single, long, open reading frame was created. The self-processing properties of these artificial polyproteins were investigated and the co-translational 'cleavage' products quantified. The processing products from our artificial polyprotein systems showed a molar excess of 'cleavage' product N-terminal of 2A over the product C-terminal of 2A. A series of experiments was performed to characterize our in vitro translation systems. These experiments eliminated the translational or transcriptional properties of the in vitro systems as an explanation for this imbalance. In addition, the processing products derived from a control construct encoding the P1P2 region of the human rhinovirus polyprotein, known to be proteolytically processed, were quantified and found to be equimolar. Translation of a construct encoding green fluorescent protein (GFP), FMDV 2A and beta-glucuronidase, also in a single open reading frame, in the presence of puromycin, showed this antibiotic to be preferentially incorporated into the [GFP2A] translation product. We conclude that the discrete translation products from our artificial polyproteins are not produced by proteolysis. We propose that the FMDV 2A sequence, rather than representing a proteolytic element, modifies the activity of the ribosome to promote hydrolysis of the peptidyl(2A)-tRNA(Gly) ester linkage, thereby releasing the polypeptide from the translational complex, in a manner that allows the synthesis of a discrete downstream translation product to proceed. This process produces a ribosomal 'skip' from one codon to the next without the formation of a peptide bond.  (+info)

The influence of downstream protein-coding sequence on internal ribosome entry on hepatitis C virus and other flavivirus RNAs. (19/193)

Some studies suggest that the hepatitis C virus (HCV) internal ribosome entry site (IRES) requires downstream 5' viral polyprotein-coding sequence for efficient initiation of translation, but the role of this RNA sequence in internal ribosome entry remains unresolved. We confirmed that the inclusion of viral sequence downstream of the AUG initiator codon increased IRES-dependent translation of a reporter RNA encoding secretory alkaline phosphatase, but found that efficient translation of chloramphenicol acetyl transferase (CAT) required no viral sequence downstream of the initiator codon. However, deletion of an adenosine-rich domain near the 5' end of the CAT sequence, or the insertion of a small stable hairpin structure (deltaG = -18 kcal/mol) between the HCV IRES and CAT sequences (hpCAT) substantially reduced IRES-mediated translation. Although translation could be restored to both mutants by the inclusion of 14 nt of the polyprotein-coding sequence downstream of the AUG codon, a mutational analysis of the inserted protein-coding sequence demonstrated no requirement for either a specific nucleotide or amino acid-coding sequence to restore efficient IRES-mediated translation to hpCAT. Similar results were obtained with the structurally and phylogenetically related IRES elements of classical swine fever virus and GB virus B. We conclude that there is no absolute requirement for viral protein-coding sequence with this class of IRES elements, but that there is a requirement for an absence of stable RNA structure immediately downstream of the AUG initiator codon. Stable RNA structure immediately downstream of the initiator codon inhibits internal initiation of translation but, in the case of hpCAT, did not reduce the capacity of the RNA to bind to purified 40S ribosome subunits. Thus, stable RNA structure within the 5' proximal protein-coding sequence does not alter the capacity of the IRES to form initial contacts with the 40S subunit, but appears instead to prevent the formation of subsequent interactions between the 40S subunit and viral RNA in the vicinity of the initiator codon that are essential for efficient internal ribosome entry.  (+info)

Further identification and characterization of novel intermediate and mature cleavage products released from the ORF 1b region of the avian coronavirus infectious bronchitis virus 1a/1b polyprotein. (20/193)

The coronavirus 3C-like proteinase is one of the viral proteinases responsible for processing of the 1a and 1a/1b polyproteins to multiple mature products. In cells infected with avian coronavirus infectious bronchitis virus (IBV), three proteins of 100, 39, and 35 kDa, respectively, were previously identified as mature cleavage products released from the 1b region of the 1a/1b polyprotein by the 3C-like proteinase. In this report, we show the identification of two more cleavage products of 68 and 58 kDa released from the same region of the polyprotein. In addition, two stable intermediate cleavage products with molecular masses of 160 and 132 kDa, respectively, were identified in IBV-infected cells. The 160-kDa protein was shown to be an intermediate cleavage product covering the 100- and 68-kDa proteins, and the 132-kDa protein to be an intermediate cleavage product covering the 58-, 39-, and 35-kDa proteins. Immunofluorescent staining of IBV-infected cells and cells expressing individual cleavage products showed that the 100-, 68-, and 58-kDa proteins were associated with the membranes of the endoplasmic reticulum, and the 39- and 35-kDa proteins displayed diffuse distribution patterns.  (+info)

Involvement of RNA2-encoded proteins in the specific transmission of Grapevine fanleaf virus by its nematode vector Xiphinema index. (21/193)

The nepovirus Grapevine fanleaf virus (GFLV) is specifically transmitted by the nematode Xiphinema index. To identify the RNA2-encoded proteins involved in X. index-mediated spread of GFLV, chimeric RNA2 constructs were engineered by replacing the 2A, 2B(MP), and/or 2C(CP) sequences of GFLV with their counterparts in Arabis mosaic virus (ArMV), a closely related nepovirus which is transmitted by Xiphinema diversicaudatum but not by X. index. Among the recombinant viruses obtained from transcripts of GFLV RNA1 and chimeric RNA2, only those which contained the 2C(CP) gene (504 aa) and 2B(MP) contiguous 9 C-terminal residues of GFLV were transmitted by X. index as efficiently as natural and synthetic wild-type GFLV, regardless of the origin of the 2A and 2B(MP) genes. As expected, ArMV was not transmitted probably because it is not retained by X. index. These results indicate that the determinants responsible for the specific spread of GFLV by X. index are located within the 513 C-terminal residues of the polyprotein encoded by RNA2.  (+info)

Leader protein of encephalomyocarditis virus binds zinc, is phosphorylated during viral infection, and affects the efficiency of genome translation. (22/193)

Encephalomyocarditis virus (EMCV) is the prototype member of the cardiovirus genus of picornaviruses. For cardioviruses and the related aphthoviruses, the first protein segment translated from the plus-strand RNA genome is the Leader protein. The aphthovirus Leader (173-201 amino acids) is an autocatalytic papain-like protease that cleaves translation factor eIF-4G to shut off cap-dependent host protein synthesis during infection. The less characterized cardioviral Leader is a shorter protein (67-76 amino acids) and does not contain recognizable proteolytic motifs. Instead, these Leaders have sequences consistent with N-terminal zinc-binding motifs, centrally located tyrosine kinase phosphorylation sites, and C-terminal, acid-rich domains. Deletion mutations, removing the zinc motif, the acid domain, or both domains, were engineered into EMCV cDNAs. In all cases, the mutations gave rise to viable viruses, but the plaque phenotypes in HeLa cells were significantly smaller than for wild-type virus. RNA transcripts containing the Leader deletions had reduced capacity to direct protein synthesis in cell-free extracts and the products with deletions in the acid-rich domains were less effective substrates at the L/P1 site, for viral proteinase 3Cpro. Recombinant EMCV Leader (rL) was expressed in bacteria and purified to homogeneity. This protein bound zinc stoichiometrically, whereas protein with a deletion in the zinc motif was inactive. Polyclonal mouse sera, raised against rL, immunoprecipitated Leader-containing precursors from infected HeLa cell extracts, but did not detect significant pools of the mature Leader. However, additional reactions with antiphosphotyrosine antibodies show that the mature Leader, but not its precursors, is phosphorylated during viral infection. The data suggest the natural Leader may play a role in regulation of viral genome translation, perhaps through a triggering phosphorylation event.  (+info)

The conformation of the mature dimeric human immunodeficiency virus type 1 RNA genome requires packaging of pol protein. (23/193)

The packaging of a mature dimeric RNA genome is an essential step in human immunodeficiency virus type 1 (HIV-1) replication. We have previously shown that overexpression of a protease (PR)-inactive HIV-1 Gag-Pro-Pol precursor protein generates noninfectious virions that contain mainly monomeric RNA (M. Shehu-Xhilaga, S. M. Crowe, and J. Mak, J. Virol. 75:1834-1841, 2001). To further define the contribution of HIV-1 Gag and Gag-Pro-Pol to RNA maturation, we analyzed virion RNA dimers derived from Gag particles in the absence of Gag-Pro-Pol. Compared to wild-type (WT) dimeric RNAs, these RNA dimers have altered mobility and low stability under electrophoresis conditions, suggesting that the HIV-1 Gag precursor protein alone is not sufficient to stabilize the dimeric virion RNA structure. The inclusion of an active viral PR, without reverse transcriptase (RT) and integrase (IN), rescued the stability of the virion RNA dimers in the Gag particles but did not restore the mobility of the RNAs, suggesting that RT and IN are also required for virion RNA dimer maturation. Thin-section electron microscopy showed that viral particles deficient in RT and IN contain empty cone-shaped cores. The abnormal core structure indicates a requirement for Gag-Pro-Pol packaging during core maturation. Supplementing viral particles with either RT or IN via Vpr-RT or Vpr-IN alone did not correct the conformation of the dimer RNAs, whereas expression of both RT and IN in trans as a Vpr-RT-IN fusion restored RNA dimer conformation to that of the WT virus and also restored the electron-dense, cone-shaped virion core characteristic of WT virus. Our data suggest a role for RT-IN in RNA dimer conformation and the formation of the electron-dense viral core.  (+info)

Characterization of the protease of a fish retrovirus, walleye dermal sarcoma virus. (24/193)

Three fish retroviruses infecting walleyes constitute the recently recognized genus called epsilonretrovirus. The founding member of this group, walleye dermal sarcoma virus (WDSV), induces benign skin tumors in the infected fish and replicates near 4 degrees C. While the viral genomic sequence is known, biochemical characterization of the virus has been limited to the identification of the mature structural and envelope proteins present in virions. We undertook this study to determine the cleavage sites in the WDSV Pro and Pol proteins and to characterize the viral protease (PR) in vitro. A recombinant PR was expressed in and purified from Escherichia coli as a larger fusion with additional nucleocapsid and reverse transcriptase residues flanking the PR domain. Autocleavage produced a functional, mature PR. Autocleavage as well as cleavage of peptides and of Gag protein by the mature PR occurred at a pH optimum of 7.0, higher than that of other retroviral proteases. Analysis of the cleavage sites identified a glutamine residue in the P2 position of all WDSV sites, both in Gag and in Pol. Amino acid sequence alignments of Gag-Pro-Pol from WDSV, walleye epidermal hyperplasia virus type 1, and walleye epidermal hyperplasia virus type 2 showed the P2 glutamine to be conserved in all cleavage sites in these three viruses. Such conservation is unprecedented in other retroviruses.  (+info)