Prostate cancer chemoprevention by green tea: in vitro and in vivo inhibition of testosterone-mediated induction of ornithine decarboxylase. (33/6663)

Recently, we have shown that ornithine decarboxylase (ODC), a rate-controlling enzyme in the polyamine biosynthetic pathway, is overexpressed in prostate cancer (PCA) and prostatic fluid in humans (R. R. Mohan et al., Clin. Cancer Res., 5: 143-147, 1999). ODC is also characterized as an androgen-responsive gene, and the androgenic stimulation regulates the development and growth of both normal and tumorigenic prostate cells. Thus, chemopreventive approaches aimed toward the modulation of ODC could be effective against PCA. Green tea polyphenols (GTPs) possess strong chemopreventive properties against a variety of animal tumor models and in some human epidemiological studies. At least two epidemiological studies have suggested that people who consume tea regularly may have a decreased risk of PCA. In this study, we investigated the effect of GTPs against testosterone-mediated induction of ODC in human prostate carcinoma cells, LNCaP as an in vitro model, and in Cpb:WU rats and C57BL/6 mice as in vivo models. Treatment of LNCaP cells with testosterone resulted in induction of ODC activity in a dose-dependent manner. Pretreatment of the cells with GTPs resulted in a significant inhibition of testosterone-caused induction of ODC activity in a dose-dependent manner. Similar effects of GTPs were observed in anchorage-independent growth assay of LNCaP cells where pretreatment of the cells with GTP was found to result in dose-dependent inhibition of colony formation. Testosterone treatment of the cells resulted in a significant increase in the level of ODC mRNA, and this increase was almost completely abolished by prior treatment of the cells with GTPs. The administration of testosterone (10 mg/kg body weight, i.p.) to sham-operated and castrated Cpb:WU rats resulted in 2- and 38-fold increases in ODC activity, respectively, in the ventral prostate. Oral feeding of 0.2% GTPs in drinking water for 7 days before testosterone administration resulted in 20 and 54% decreases in testosterone-caused induction of ODC activity in sham-operated and castrated rats, respectively. Similar results were obtained with C57BL/6 mice, where testosterone treatment at similar dosage resulted in a 2-fold increase in ODC activity in the ventral prostate and prior oral feeding with 0.2% GTPs resulted in 40% inhibition in this induction.  (+info)

Biodegradable polymer film as a source for formation of human fetal retinal pigment epithelium spheroids. (34/6663)

PURPOSE: To evaluate the attachment of human fetal rctinal pigment epithelial (HFRPE) cells to a biodegradable polymer film with subsequent formation of spheroids in vitro. METHODS: Ten biodegradable polymer films with different compositions were examined for their physical properties and ease of manipulation under a dissecting microscope. The film with the most suitable handling characteristics was chosen, and a purely isolated sheet of HFRPE cells was attached to it. The purity of the cells was assessed by their pigmentation and expression of cytokeratin. Proliferation was assessed by incorporation of 5-bromo-2'-deoxyuridine (BrdtJ). Cellular structure was analyzed under light and electron microscopes, and the functional capability of the cells was evaluated by rod outer segment (ROS) phagocytosis. RESULTS: The polymer film with composition 50:50 poly (DL-lactide) (PLA)/poly (DL-lactide-co-glycolide) (PLG) with an inherent viscosity of 1.03 dl/g was found to be the most suitable for handling under the microscope. Sheets of HFRPE cells attached to the polymer films within 48 hours and began to form spheroids. All the isolated cells were pigmented and expressed cytokeratin. They possessed a cuboidal morphology, numerous apical microvilli, and no sign of dedifferentiation. HFRPE cells produced extracellular matrix (collagen filaments) on their basal side, filling the cavities of the polymer film. The cells subsequently proliferated, incorporated BrdU, migrated onto the culture plate to form monolayers, and phagocytized ROS. CONCLUSIONS: Biodegradable polymer films can be used as a scaffold for the adhesion of the HFRPE sheet and formation of spheroids. Spheroids represent a source of high density and well-differentiated HFRPE cells that are easy to transfer. Furthermore, the stricture of the membrane makes it suitable for additional applications.  (+info)

Health hazards in the production and processing of some fibers, resins, and plastics in Bulgaria. (35/6663)

Results of the toxicological studies of working conditions, general and professional morbidity, and complex examinations carried out on workers engaged in the production of polyamides, polyacrylonitrile fibers, polyester fibers and poly (vinyl chloride) resin, urea-formaldehyde glue, glass fibre materials and polyurethane resins are given. An extremely high occupational hazard for workers in the production of poly (vinyl chloride) resin and porous materials from polyurethane resins and urea-formaldehyde glue has been established. Cases of vinyl chloride disease, poisoning from formaldehyde, isocyanates, and styrene were noted. Prophylactic measures were taken in Bulgaria to lessen the occupational hazard in the productions as set forth included limitation of the work day to 6 hr, free food, additional bonus and leave, and annual physical examinations of workers.  (+info)

Criteria for the health evaluation of polymeric materials building. (36/6663)

Various polymer-based synthetic materials have become increasingly ubiquitous in manufactured materials in the U.S.S.R. These release various chemical compounds to the ambient air. The maximum permissible concentrations that have been established for various hazardous chemicals in ambient air must be adjusted to account for the conditions of apartment life. Studies have been conducted to determine exactly what compounds are released and at what rate. Toxicological studies and studies of various physical and chemical properties are required to determine the health effects of these chemicals at concentrations at which they are expected to occur in apartments. More research has to be carried out in this field to further expand our knowledge, and we must beware of any introduction of new polymeric materials without first studying their contribution to possible detrimental health effects.  (+info)

Health aspects of the curing of synthetic rubbers. (37/6663)

A commonly used tread rubber formulation was cured in the laboratory under conditions simulating vulcanization in the Bag-O-Matic press. Volatile emissions were collected on charcoal and analyzed by combined GC-mass spectrometry. The compounds identified were either contaminants present in the raw material or reaction products. Some of these compounds were also identified in charcoal tube samples collected in the atmosphere of the industrial operations. Estimates based on the loss of weight of rubber during curing were used to predict airborne concentrations and compared to the concentrations actually found. The literature of the toxicity of raw materials and effluents was reviewed, and no acute or chronic toxicological effects would be anticipated. Information concerning potential carcinogenicity was not available and could not be evaluated.  (+info)

Chemistry and toxicity of flame retardants for plastics. (38/6663)

An overview of commercially used flame retardants is give. The most used flame retardants are illustrated and the seven major markets, which use 96% of all flame-retarded polymers, are described. Annual flame retardant growth rate for each major market is also projected. Toxicity data are reviewed on only those compositions that are considered commercially significant today. This includes 18 compounds or families of compounds and four inherently flame-retarded polymers. Toxicological studies of flame retardants for most synthetic materials are of recent origin and only a few of the compounds have been evaluated in any great detail. Considerable toxicological problems may exist in the manufacturing of some flame retardants, their by-products, and possible decomposition products.  (+info)

Toxicity of combustion products from burning polymers: development and evaluation of methods. (39/6663)

Laboratory and room-scale experiments were conducted with natural and synthetic polymers: cotton, paper, wood, wool, acetate, acrylic, nylon, and urethane. Smoke and off-gases from single materials were generated in a dual-compartment 110-liter exposure chamber. Multicomponent, composite fuel loads were burned within a 100 m(3) facility subdivided into rooms. In chamber experiments, mortality depended on the amount of material burned, i.e., fuel consumption (FC). Conventional dose (FC)/mortality curves were obtained, and the amount of fuel required to produce 50% mortality (FC(50)) was calculated. With simple flame ignition, cotton was the only material that produced smoke concentrations lethal to rats; FC(50) values for cotton ranged from 2 g to 9 g, depending on the configuration of the cotton sample burned. When supplemental conductive heat was added to flame ignition, the following FC(50) values were obtained; nylon, 7 g; acrylic, 8 g; newsprint, 9 g; cotton, 10 g; and wood, 11 g. Mortality resulting from any given material depended upon the specific conditions employed for its thermal decomposition. Toxicity of off-gasses from pyrolysis of phosphorus-containing trimethylol propane-polyurethane foams was markedly decreased by addition of a flame ignition source. Further studies are needed to determine the possible relevance of single-material laboratory scale smoke toxicity experiments. Room-scale burns were conducted to assess the relative contributions of single materials to toxicity of smoke produced by a multicomponent self-perpetuating fire. Preliminary results suggest that this approach permits a realistic evaluation of the contribution of single materials to the toxicity of smoke from residential fires.  (+info)

Activation of the apoptotic endonuclease DFF40 (caspase-activated DNase or nuclease). Oligomerization and direct interaction with histone H1. (40/6663)

DNA fragmentation factor (DFF) is a heterodimeric protein composed of 45-kDa (DFF45) and 40-kDa (DFF40) subunits, a protein that mediates regulated DNA fragmentation and chromatin condensation in response to apoptotic signals. DFF45 is a specific molecular chaperone and an inhibitor for the nuclease activity of DFF40. Previous studies have shown that upon cleavage of DFF45 by caspase-3, the nuclease activity of DFF40 is relieved of inhibition. Here we further investigate the mechanism of DFF40 activation. We demonstrate that DFF45 can also be cleaved and inactivated by caspase-7 but not by caspase-6 and caspase-8. The cleaved DFF45 fragments dissociate from DFF40, allowing DFF40 to oligomerize to form a large functional complex that cleaves DNA by introducing double strand breaks. Histone H1 directly interacts with DFF, confers DNA binding ability to DFF, and stimulates the nuclease activity of DFF40 by increasing its Kcat and decreasing its Km.  (+info)