Gene expression, synthesis, and secretion of interleukin 18 and interleukin 1beta are differentially regulated in human blood mononuclear cells and mouse spleen cells. (73/67158)

Interleukin (IL)-18, formerly called interferon gamma (IFN-gamma)-inducing factor, is biologically and structurally related to IL-1beta. A comparison of gene expression, synthesis, and processing of IL-18 with that of IL-1beta was made in human peripheral blood mononuclear cells (PBMCs) and in human whole blood. Similar to IL-1beta, the precursor for IL-18 requires processing by caspase 1. In PBMCs, mature but not precursor IL-18 induces IFN-gamma; in whole human blood stimulated with endotoxin, inhibition of caspase 1 reduces IFN-gamma production by an IL-1beta-independent mechanism. Unlike the precursor for IL-1beta, precursor for IL-18 was expressed constitutively in PBMCs and in fresh whole blood from healthy human donors. Western blotting of endotoxin-stimulated PBMCs revealed processed IL-1beta in the supernatants via an caspase 1-dependent pathway. However, in the same supernatants, only unprocessed precursor IL-18 was found. Unexpectedly, precursor IL-18 was found in freshly obtained PBMCs and constitutive IL-18 gene expression was present in whole blood of healthy donors, whereas constitutive IL-1beta gene expression is absent. Similar to human PBMCs, mouse spleen cells also constitutively contained the preformed precursor for IL-18 and expressed steady-state IL-18 mRNA, but there was no IL-1beta protein and no spontaneous gene expression for IL-1beta in these same preparations. We conclude that although IL-18 and IL-1beta are likely members of the same family, constitutive gene expression, synthesis, and processing are different for the two cytokines.  (+info)

In vivo analysis of the 3' untranslated region of the hepatitis C virus after in vitro mutagenesis of an infectious cDNA clone. (74/67158)

Large sections of the 3' untranslated region (UTR) of hepatitis C virus (HCV) were deleted from an infectious cDNA clone, and the RNA transcripts from seven deletion mutants were tested sequentially for infectivity in a chimpanzee. Mutants lacking all or part of the 3' terminal conserved region or the poly(U-UC) region were unable to infect the chimpanzee, indicating that both regions are critical for infectivity in vivo. However, the third region, the variable region, was able to tolerate a deletion that destroyed the two putative stem-loop structures within this region. Mutant VR-24 containing a deletion of the proximal 24 nt of the variable region of the 3' UTR was viable in the chimpanzee and seemed to replicate as well as the undeleted parent virus. The chimpanzee became viremic 1 week after inoculation with mutant VR-24, and the HCV genome titer increased over time during the early acute infection. Therefore, the poly(U-UC) region and the conserved region, but not the variable region, of the 3' UTR seem to be critical for in vivo infectivity of HCV.  (+info)

Neonatal gene transfer leads to widespread correction of pathology in a murine model of lysosomal storage disease. (75/67158)

For many inborn errors of metabolism, early treatment is critical to prevent long-term developmental sequelae. We have used a gene-therapy approach to demonstrate this concept in a murine model of mucopolysaccharidosis type VII (MPS VII). Newborn MPS VII mice received a single intravenous injection with 5.4 x 10(6) infectious units of recombinant adeno-associated virus encoding the human beta-glucuronidase (GUSB) cDNA. Therapeutic levels of GUSB expression were achieved by 1 week of age in liver, heart, lung, spleen, kidney, brain, and retina. GUSB expression persisted in most organs for the 16-week duration of the study at levels sufficient to either reduce or prevent completely lysosomal storage. Of particular significance, neurons, microglia, and meninges of the central nervous system were virtually cleared of disease. In addition, neonatal treatment of MPS VII mice provided access to the central nervous system via an intravenous route, avoiding a more invasive procedure later in life. These data suggest that gene transfer mediated by adeno-associated virus can achieve therapeutically relevant levels of enzyme very early in life and that the rapid growth and differentiation of tissues does not limit long-term expression.  (+info)

Mutations in the organic cation/carnitine transporter OCTN2 in primary carnitine deficiency. (76/67158)

Primary carnitine deficiency is an autosomal recessive disorder of fatty acid oxidation caused by defective carnitine transport. This disease presents early in life with hypoketotic hypoglycemia or later in life with skeletal myopathy or cardiomyopathy. The gene for this condition maps to 5q31.2-32 and OCTN2, an organic cation/carnitine transporter, also maps to the same chromosomal region. Here we test the causative role of OCTN2 in primary carnitine deficiency by searching for mutations in this gene in affected patients. Fibroblasts from patients with primary carnitine deficiency lacked mediated carnitine transport. Transfection of patient's fibroblasts with the OCTN2 cDNA partially restored carnitine transport. Sequencing of the OCTN2 gene revealed different mutations in two unrelated patients. The first patient was homozygous (and both parents heterozygous) for a single base pair substitution converting the codon for Arg-282 to a STOP codon (R282X). The second patient was a compound heterozygote for a paternal 1-bp insertion producing a STOP codon (Y401X) and a maternal 1-bp deletion that produced a frameshift creating a subsequent STOP codon (458X). These mutations decreased the levels of mature OCTN2 mRNA and resulted in nonfunctional transporters, confirming that defects in the organic cation/carnitine transporter OCTN2 are responsible for primary carnitine deficiency.  (+info)

Two gonadotropin-releasing hormone receptor subtypes with distinct ligand selectivity and differential distribution in brain and pituitary in the goldfish (Carassius auratus). (77/67158)

In the goldfish (Carassius auratus) the two endogenous forms of gonadotropin-releasing hormone (GnRH), namely chicken GnRH II ([His5, Trp7,Tyr8]GnRH) and salmon GnRH ([Trp7,Leu8]GnRH), stimulate the release of both gonadotropins and growth hormone from the pituitary. This control is thought to occur by means of the stimulation of distinct GnRH receptors. These receptors can be distinguished on the basis of differential gonadotropin and growth hormone releasing activities of naturally occurring GnRHs and GnRHs with variant amino acids in position 8. We have cloned the cDNAs of two GnRH receptors, GfA and GfB, from goldfish brain and pituitary. Although the receptors share 71% identity, there are marked differences in their ligand selectivity. Both receptors are expressed in the pituitary but are differentially expressed in the brain, ovary, and liver. Thus we have found and cloned two full-length cDNAs that appear to correspond to different forms of GnRH receptor, with distinct pharmacological characteristics and tissue distribution, in a single species.  (+info)

Early diagnosis of central nervous system aspergillosis with combination use of cerebral diffusion-weighted echo-planar magnetic resonance image and polymerase chain reaction of cerebrospinal fluid. (78/67158)

We treated a patient diagnosed as central nervous system (CNS) aspergillosis with the combined use of cerebral diffusion-weighted echo-planar magnetic resonance imaging (DWI) and polymerase chain reaction of the cerebrospinal fluid (CSF-PCR). DWI, a cutting-edge imaging modality to reveal the earliest changes of cerebral infarction, detected cerebral fungal embolization when the conventional computed tomographic scan and magnetic resonance imaging failed to reveal it. CSF-PCR demonstrated the presence of Aspergillus-specific DNA in the specimen, when the conventional examination and culture of CSF were nonspecific or negative. These diagnostic methods could be useful in the early diagnosis of CNS aspergillosis.  (+info)

Class I integrons in Gram-negative isolates from different European hospitals and association with decreased susceptibility to multiple antibiotic compounds. (79/67158)

Class I integrons are associated with carriage of genes encoding resistance to antibiotics. Expression of inserted resistance genes within these structures can be poor and, as such, the clinical relevance in terms of the effect of integron carriage on susceptibility has not been investigated. Of 163 unrelated Gram-negative isolates randomly selected from the intensive care and surgical units of 14 different hospitals in nine European countries, 43.0% (70/163) of isolates were shown to be integron-positive, with inserted gene cassettes of various sizes. Integrons were detected in isolates from all hospitals with no particular geographical variations. Integron-positive isolates were statistically more likely to be resistant to aminoglycoside, quinolone and beta8-lactam compounds, including third-generation cephalosporins and monobactams, than integron-negative isolates. Integron-positive isolates were also more likely to be multi-resistant than integron-negative isolates. This association implicates integrons in multi-drug resistance either directly through carriage of specific resistance genes, or indirectly by virtue of linkage to other resistance determinants such as extended-spectrum beta-lactamase genes. As such their widespread presence is a cause for concern. There was no association between the presence of integrons and susceptibility to cefepime, amikacin and the carbapenems, to which at least 97% of isolates were fully susceptible.  (+info)

The effect of reserpine, an inhibitor of multidrug efflux pumps, on the in-vitro activities of ciprofloxacin, sparfloxacin and moxifloxacin against clinical isolates of Staphylococcus aureus. (80/67158)

In Staphylococcus aureus, in addition to mutations in the grl and gyr gene loci, multidrug efflux pumps like NorA contribute to decreased fluoroquinolone susceptibility. Efflux pumps can be inhibited by the plant alkaloid reserpine, which, at 20 mg/L, reduced sparfloxacin, moxifloxacin and ciprofloxacin IC50s and MICs by up to four-fold in 11, 21 and 48 of the 102 unrelated clinical isolates tested, respectively. The effect was less pronounced with the hydrophobic drugs sparfloxacin and moxifloxacin than with the hydrophilic drug ciprofloxacin and was stable in all 25 clonally related isolates tested.  (+info)