Importance of passive diffusion in the uptake of polychlorinated biphenyls by phagotrophic protozoa. (41/1428)

Unicellular protozoan grazers represent a size class of organisms where a transition in the mechanism of chlorobiphenyl (CB) introduction, from diffusion through surface membranes to ingestion of contaminated prey, could occur. This study compares the relative importance of these two processes in the overall uptake of polychlorinated biphenyls by protists. Uptake rates and steady-state concentrations were compared in laboratory cultures of grazing and nongrazing protozoa. These experiments were conducted with a 10-microm marine scuticociliate (Uronema sp.), bacterial prey (Halomonas halodurans), and a suite of 21 CB congeners spanning a range of aqueous solubilities. The dominant pathway of CB uptake by both grazing and nongrazing protozoa was diffusion. Organic-carbon-normalized CB concentrations (in the protozoan cell) were equivalent in grazing and nongrazing protozoa for all congeners studied. Rate constants for uptake into and loss from the protozoan cell were independently determined by using [3,3',4, 4'-(14)C]tetrachlorobiphenyl (IUPAC no. 77), 0.38 +/- 0.03 min(-1) and (1.1 +/- 0.1) x 10(-5) (g of organic carbon)(-1) min(-1), respectively. Magnitudes of the uptake and loss processes were calculated and compared by using a numerical model. The model result was consistent with data from the bioaccumulation experiment and supported the hypothesis that diffusive uptake is faster than ingestive uptake in phagotrophic unicellular protozoa.  (+info)

Effect of micelle fatty acid composition and 3,4,3', 4'-tetrachlorobiphenyl (TCB) exposure on intestinal [(14)C]-TCB bioavailability and biotransformation in channel catfish in situ preparations. (42/1428)

Polychlorinated biphenyls are transferred in the diet along aquatic food chains. This study investigated the effect of dietary micelle composition and 3,4,3',4'-tetrachlorobiphenyl (TCB) exposure upon the subsequent systemic bioavailability and intestinal metabolism of [(14)C]-TCB in a catfish in situ intestinal preparation. Initial in vitro experiments examined the solubility of [(14)C]-TCB in micelles of varying fatty acid composition. Micelles composed of single fatty acids demonstrated greater [(14)C]-TCB solubility with those fatty acids of longer chain length. Similarly, micelles of the long-chain fatty acid, linoleic acid, solubilized more [(14)C]-TCB than mixed micelles formulated from equal amounts of myristic (14:0), palmitic (16:0), stearic (18:0), or linoleic (18:2) acids. Systemic bioavailability of [(14)C]-TCB (60 microM) from an in situ perfused intestinal preparation was 2.2-fold greater when delivered to the intestine in linoleic acid micelles as compared to the mixed micelle preparation. Catfish exposed in vivo to either 0.5 or 5.0 mg TCB/kg feed for 10 days resulted in a 45 to 47% decrease in the subsequent systemic bioavailability of [(14)C]-TCB in the in situ intestinal preparation. Total intestinal cytochrome P450 content was not significantly affected by TCB preexposure. Immunodetectable CYP1A was found only in the 5.0 mg TCB/kg diet treatment. Corresponding intestinal aryl hydrocarbon hydroxylase (AHH) activities were 2.46 +/- 1.16, 2.43 +/- 1.58, and 11.35 +/- 10.25 pmol/min/mg protein for the control, 0.5, and 5 mg TCB/kg diet groups, respectively. [(14)C]-TCB in the in situ preparation was metabolized to only a small degree upon a single pass through the intestinal mucosa of the catfish. High variability and low rates of metabolism precluded the association of the magnitude of metabolism with dietary TCB pretreatment. Analysis of tissue sample extracts demonstrated 4 minor peaks, 3 of which were tentatively identified by co-elution with standards as 2-OH-3,4,3',4'-TCB, 4-OH-3,5,3',4'-TCB, and 5-OH-3, 4,3',4'-TCB. A fourth remains unidentified. Histological changes in the intestine such as thinning of the submucosa and increased numbers of goblet cells were evident at the 5.0 mg TCB/kg diet dose. These results suggest that TCB intestinal bioavailability may be linked to micelle composition as well as TCB exposure history. Furthermore, single pass intestinal metabolism appears to be a minor contributor to the biotransformational modification of dietary TCB.  (+info)

Concentrations of organochlorines related to titers to Epstein-Barr virus early antigen IgG as risk factors for hairy cell leukemia. (43/1428)

Hairy cell leukemia (HCL) is a rare chronic B-cell malignancy that, according to modern classifications, is a subgroup of non-Hodgkin lymphomas (NHLs). A rapid increase in incidence of NHL has been reported in many countries. The reasons for this increase are largely unknown, but exposure to organochlorines has been suggested as a risk factor. Epstein-Barr virus is a human herpesvirus that has been associated with certain subgroups of NHL. In this study, we measured lipid adjusted blood concentrations (in nanogram per gram) of 36 congeners of polychlorinated biphenyls (PCBs), p, p'-dichlorodiphenyldichloroethylene (p,p'-DDE), hexachlorobenzene (HCB), and four subgroups of chlordanes (trans-nonachlor, cis-nonachlor, MC6, and oxychlordane) in incident cases of HCL and controls from the general population. We obtained results on organochlorines and antibodies for 54 cases and 54 controls. Titers of antibodies to the Epstein-Barr early antigen and Epstein-Barr nuclear antigen, measured as P107, were correlated to concentrations of organochlorines to evaluate the possibility of an interaction between these factors in the pathogenesis of HCL. We found no significant difference in lipid-adjusted blood concentrations of total PCBs, p,p'-DDE, HCB, or the sum of the chlordanes between cases and controls. Titers of antibodies to Epstein-Barr early antigen IgG [Greater and equal to] 40 were correlated to an increased risk for HCL. This risk was further increased in those with a level above the median value of p,p'-DDE, HCB, or the sum of the chlordanes, suggesting an interaction between Epstein-Barr virus and a higher concentration of these chemicals. We also found increased risk for the sum of immunotoxic PCB group.  (+info)

Dose and inducer-dependent induction of cytochrome P450 1A in endothelia of the eel, including in the swimbladder rete mirabile, a model microvascular structure. (44/1428)

Endothelium is a common site of cytochrome P450 1A (CYP1A) induction in vertebrates, and endothelial CYP1A could affect the distribution and toxicity of CYP1A substrates. We investigated CYP1A induction in organs rich in endothelium, gill, heart, and a microvascular model, the swimbladder rete mirabile, in the eel. Benzo[a]pyrene (BP) and 3, 3',4,4'-tetrachlorobiphenyl (TCB), radiolabeled and injected intraperitoneally, showed similar distribution in eels, with dose-dependent increases in concentration in heart and rete mirabile. BP [given at 0.1, 1, and 10 mg/kg (0.4, 4, and 40 micromol/kg)], TCB [given at 0.1, 1, and 10 mg/kg (0.3, 3, 30, and 60 micromol/kg)], and beta-naphthoflavone (BNF) [given at 0.1, 1, 5, 10, and 100 mg/kg (0.4, 4, 20, 40, and 400 micromol/kg)] induced microsomal CYP1A and ethoxyresorufin O-deethylase in heart and rete mirabile. Immunohistochemical analysis confirmed that induction of CYP1A in heart and rete mirabile occurs in the endothelium. Increasing doses of each compound caused increasing penetration of induction into the vascular bed of the rete, but with BNF and BP induction penetrated further than with TCB. At high doses of BNF there also was induction in epithelial cells adjacent to endothelium in gill and kidney. CYP1A also was induced in heart and rete mirabile of eels from sites heavily contaminated by aryl hydrocarbon receptor (AHR) agonists. The penetration of CYP1A induction into capillaries of the rete mirabile reflects the penetration of the inducer itself, consistent with the idea that endothelial CYP1A can indicate the local distribution of AHR agonists. The microvascular rete mirabile in the eel provides a model system to explore further a hypothesis that endothelial CYP1A participates in removal of some AHR agonists from the circulation and to examine the consequences of CYP1A induction to the vascular system.  (+info)

Identification of a serine hydrolase as a key determinant in the microbial degradation of polychlorinated biphenyls. (45/1428)

The ability of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate (HOPDA) hydrolase (BphD) of Burkholderia cepacia LB400 to hydrolyze polychlorinated biphenyl (PCB) metabolites was assessed by determining its specificity for monochlorinated HOPDAs. The relative specificities of BphD for HOPDAs bearing chlorine substituents on the phenyl moiety were 0.28, 0.38, and 1.1 for 8-Cl, 9-Cl, and 10-Cl HOPDA, respectively, versus HOPDA (100 mm phosphate, pH 7.5, 25 degrees C). In contrast, HOPDAs bearing chlorine substituents on the dienoate moiety were poor substrates for BphD, which hydrolyzed 3-Cl, 4-Cl, and 5-Cl HOPDA at relative maximal rates of 2.1 x 10(-3), 1.4 x 10(-4), and 0.36, respectively, versus HOPDA. The enzymatic transformation of 3-, 5-, 8-, 9-, and 10-Cl HOPDAs yielded stoichiometric quantities of the corresponding benzoate, indicating that BphD catalyzes the hydrolysis of these HOPDAs in the same manner as unchlorinated HOPDA. HOPDAs also underwent a nonenzymatic transformation to products that included acetophenone. In the case of 4-Cl HOPDA, this transformation proceeded via the formation of 4-OH HOPDA (t(12) = 2.8 h; 100 mm phosphate, pH 7.5, 25 degrees C). 3-Cl HOPDA (t(12) = 504 h) was almost 3 times more stable than 4-OH HOPDA. Finally, 3-Cl, 4-Cl and 4-OH HOPDAs competitively inhibited the BphD-catalyzed hydrolysis of HOPDA (K(ic) values of 0.57 +/- 0. 04, 3.6 +/- 0.2, and 0.95 +/- 0.04 microm, respectively). These results explain the accumulation of HOPDAs and chloroacetophenones in the microbial degradation of certain PCB congeners. More significantly, they indicate that in the degradation of PCB mixtures, BphD would be inhibited, thereby slowing the mineralization of all congeners. BphD is thus a key determinant in the aerobic microbial degradation of PCBs.  (+info)

Parallels between attention deficit hyperactivity disorder and behavioral deficits produced by neurotoxic exposure in monkeys. (46/1428)

Attention deficit hyperactivity disorder (ADHD) is a disability that affects between 3 and 7% of children, with a significant number of individuals continuing to be affected into adolescence and adulthood. ADHD is characterized in part by an inability to organize complex sequences of behavior, to persist in the face of distracting stimuli, and to respond appropriately to the consequences of past behavior. There are some parallels between the features of ADHD and the behavior of monkeys exposed developmentally to lead or polychlorinated biphenyls (PCBs), as evidenced by research from our laboratory. Both lead and PCB exposure produce deficits on discrimination reversal and spatial delayed alternation performance; treated monkeys exhibit deficits in their ability to change an already established response strategy and inhibit inappropriate responses. Monkeys exposed developmentally to lead or PCBs also perform differently from control monkeys on a fixed interval schedule of reinforcement, which requires the temporal organization of behavior using only internal cues. Whereas the etiology of ADHD is multifactorial, the possibility that neurotoxic agents in the environment contribute to the incidence of ADHD warrants attention.  (+info)

Thyroidal dysfunction and environmental chemicals--potential impact on brain development. (47/1428)

Certain polyhalogenated aromatic hydrocarbons such as polychlorinated biphenyls (PCBs) and dibenzo-p-dioxins (dioxins, 2,3,7, 8-tetrachlorodibenzo-p-dioxin) have been shown to have neurotoxic effects and to alter thyroid function during critical periods of thyroid hormone-dependent brain development. This has led to the suggestion that some of the neurotoxic effects of these compounds could be mediated through the thyroid system. Thyroid hormones are essential for normal brain development during a critical period beginning in utero and extending through the first 2 years postpartum. They regulate neuronal proliferation, migration, and differentiation in discrete regions of the brain during definitive time periods. Even transient disruption of this normal pattern can impair brain development. Thyroid hormones are necessary for normal cytoskeletal assembly and stability and the cytoskeletal system is essential for migration and neuronal outgrowth. In addition, they regulate development of cholinergic and dopaminergic systems serving the cerebral cortex and hippocampus. Animals perinatally exposed to certain environmental organohalogens such as many of the PCBs and dioxins have abnormal thyroid function and neurologic impairment. Although there are both species and congener variabilities, most reports show exposure results in thyroid enlargement and reduced serum T(4) levels with normal T(3) levels. Initial research concentrated on studying the direct actions of xenobiotics on the thyroid; however, some of these compounds bear a structural resemblance to the natural thyroid hormones and have high affinity with thyroid hormone-binding proteins such as transthyretin. These compounds could act as agonists or antagonists for receptors of the thyroid/steroid/retinoic acid superfamily. These structurally similar organohalogens could act at multiple points to alter thyroid hormone action. The similarity of the neurologic impairment seen in thyroid disorders to that seen following PCB or dioxin exposure suggests that one mechanism of neurotoxicity of these compounds could involve interaction with the thyroid system.  (+info)

Comparison of chemical-activated luciferase gene expression bioassay and gas chromatography for PCB determination in human serum and follicular fluid. (48/1428)

We assessed exposure to dioxin-like compounds using chemical and bioassay analysis in different matrices in a female population. A total of 106 serum and 9 follicular fluid samples were collected from infertile women attending Centers for Reproductive Medicine in Belgium from 1996 to 1998. Major polychlorinated biphenyl (PCB) congeners were quantified by chemical analysis using gas chromatography with electron-capture detection, and the chemical-activated luciferase gene expression (CALUX) bioassay was used to determine the total dioxin-like toxic equivalence (TEQ) of mixtures of polyhalogenated aromatic hydrocarbons present in body fluids, such as serum and follicular fluid. To the best of our knowledge, this is the first investigation to determine TEQ values by the CALUX bioassay in follicular fluid. The TEQ levels in both matrices are well correlated (r = 0.83, p = 0.02). As the chemical and bioassay analysis executed in this study do not cover the same span of polyhalogenated aromatic hydrocarbons, we did not expect totally correlated results. Moreover, the sample workup and quantification of the analytes differed completely. Nonetheless, the TEQ values in human extracts correlated well with the sum of four major PCB congeners chemically determined in both serum and follicular fluid. These results indicate that the CALUX bioassay may serve as a simple, relatively inexpensive prescreening tool for exposure assessment in epidemiologic surveys.  (+info)