(1/3703) The mitogen-activated protein kinase signaling pathway stimulates mos mRNA cytoplasmic polyadenylation during Xenopus oocyte maturation.

The Mos protein kinase is a key regulator of vertebrate oocyte maturation. Oocyte-specific Mos protein expression is subject to translational control. In the frog Xenopus, the translation of Mos protein requires the progesterone-induced polyadenylation of the maternal Mos mRNA, which is present in the oocyte cytoplasm. Both the Xenopus p42 mitogen-activated protein kinase (MAPK) and maturation-promoting factor (MPF) signaling pathways have been proposed to mediate progesterone-stimulated oocyte maturation. In this study, we have determined the relative contributions of the MAPK and MPF signaling pathways to Mos mRNA polyadenylation. We report that progesterone-induced Mos mRNA polyadenylation was attenuated in oocytes expressing the MAPK phosphatase rVH6. Moreover, inhibition of MAPK signaling blocked progesterone-induced Mos protein accumulation. Activation of the MAPK pathway by injection of RNA encoding Mos was sufficient to induce both the polyadenylation of synthetic Mos mRNA substrates and the accumulation of endogenous Mos protein in the absence of MPF signaling. Activation of MPF, by injection of cyclin B1 RNA or purified cyclin B1 protein, also induced both Mos protein accumulation and Mos mRNA polyadenylation. However, this action of MPF required MAPK activity. By contrast, the cytoplasmic polyadenylation of maternal cyclin B1 mRNA was stimulated by MPF in a MAPK-independent manner, thus revealing a differential regulation of maternal mRNA polyadenylation by the MAPK and MPF signaling pathways. We propose that MAPK-stimulated Mos mRNA cytoplasmic polyadenylation is a key component of the positive-feedback loop, which contributes to the all-or-none process of oocyte maturation.  (+info)

(2/3703) Exon shuffling by L1 retrotransposition.

Long interspersed nuclear elements (LINE-1s or L1s) are the most abundant retrotransposons in the human genome, and they serve as major sources of reverse transcriptase activity. Engineered L1s retrotranspose at high frequency in cultured human cells. Here it is shown that L1s insert into transcribed genes and retrotranspose sequences derived from their 3' flanks to new genomic locations. Thus, retrotransposition-competent L1s provide a vehicle to mobilize non-L1 sequences, such as exons or promoters, into existing genes and may represent a general mechanism for the evolution of new genes.  (+info)

(3/3703) Alternative polyadenylation events contribute to the induction of NF-ATc in effector T cells.

The transcription factor NF-ATc is synthesized in three prominent isoforms. These differ in the length of their C terminal peptides and mode of synthesis. Due to a switch from the use of a 3' polyA site to a more proximal polyA site, NF-ATc expression switches from the synthesis of the two longer isoforms in naive T cells to that of short isoform A in T effector cells. The relative low binding affinity of cleavage stimulation factor CstF-64 to the proximal polyA site seems to contribute to its neglect in naive T cells. These alternative polyadenylation events ensure the rapid accumulation of high concentrations of NF-ATc necessary to exceed critical threshold levels of NF-ATc for gene induction in effector T cells.  (+info)

(4/3703) Sufficient length of a poly(A) tail for the formation of a potential pseudoknot is required for efficient replication of bamboo mosaic potexvirus RNA.

RNAs transcribed from a full-length infectious cDNA clone of the bamboo mosaic potexvirus (strain O) genome, pBaMV-O, were infectious to Nicotiana benthamiana plants. Mutant genomes in which the poly(A) tail is absent or replaced by a 3' tRNA-like structure from turnip yellow mosaic virus RNA failed to amplify detectably in N. benthamiana protoplasts. No amplification was detected in protoplasts inoculated with transcripts containing 4, 7, or 10 adenylate residues at the 3' end, whereas transcript inocula with 15 adenylate residues resulted in coat protein accumulation to a level 26% of that resulting from inoculation with transcripts with 25 adenylate residues (designated as wild type). Coat protein accumulation levels of 69 and 98% relative to wild type were observed after inoculation of protoplasts with transcripts bearing poly(A) tails 18 and 22 nucleotides long, respectively. The presence of a putative 3' pseudoknot structure including at least 13 adenylate residues of the 3'-terminal poly(A) tail was supported by enzymatic and chemical structural analysis. The functional relevance of this putative pseudoknot was tested by mutations that affected basepairing within the pseudoknot. These results support the existence of functional 3' pseudoknot that includes part of the 3' poly(A) tail.  (+info)

(5/3703) Synaptic plasticity: regulated translation in dendrites.

Synaptic activity can induce neurons to synthesize proteins important for cognition and brain development. Recent results suggest this activity-induced protein synthesis is partially mediated by regulated translation within neuronal dendrites.  (+info)

(6/3703) Human renin mRNA stability is increased in response to cAMP in Calu-6 cells.

The human carcinoma-derived cell line Calu-6 has previously been demonstrated to endogenously express human renin (hREN) mRNA and to markedly increase steady-state hREN mRNA levels (100-fold after 24 hours) in response to analogues of cAMP and postreceptor activators of adenylyl cyclase such as forskolin. However, both transfection analysis using hREN promoter-reporter constructs and nuclear run-on experiments suggest that transcriptional activity alone cannot account for this level of induction. We performed primer extension, reverse transcription-polymerase chain reaction, and 3' rapid amplification of cDNA ends to compare hREN mRNA between unstimulated and forskolin-stimulated cells. We demonstrate that hREN mRNA is identical under both conditions with respect to (1) utilization of the appropriate transcription start site, (2) processing of renin mRNA, and (3) utilization of the proper polyadenylation site and length of the poly-A tail. To address the mechanism of induction caused by cAMP, we used transcriptional inhibition and measured decay of hREN mRNA before and after forskolin or phorbol ester treatment. Experiments with both actinomycin D and 5, 6-dichlororibofuranosylbenzimidazole (DRB) showed that forskolin treatment markedly stabilized hREN mRNA in Calu-6 cells. A 2.3-fold increase in hREN mRNA half-life was also observed after treatment of Calu-6 cells with phorbol ester. Experiments with DRB demonstrated a similar robust stabilization of hREN mRNA after forskolin and phorbol ester treatment. These data demonstrate that the induction in hREN mRNA in response to both cAMP and phorbol ester occurs by a mechanism involving a posttranscriptional component.  (+info)

(7/3703) The stability, polyadenylic acid content and ribonucleoprotein form of nulcear ribonucleic acid in artichoke.

A nuclear preparation, containing 60-80% of the total tissue DNA and less than 0.5% of the total rRNA, was used to characterize the nuclear RNA species synthesized in cultured artichoke explants. The half-lives of the nuclear RNA species were estimated from first-order-decay analyses to be: hnRNA (heterogeneous nuclear RNA) containing poly(A), 38 min; hnRNA lacking poly(A), 37 min; 2.5 X 10(6)-mol. wt. precursor rRNA, 24 min; 1.4 X 10(6)-mol.wt. precursor rRNA, 58 min; 1.0 X 10(6)-mol.wt. precursor rRNA, 52 min. The shorter half-lives are probably overestimates, owing to the time required for equilibration of the nucleotide-precursor pools. The pathway of rRNA synthesis is considered in terms of these kinetic measurements. The rate of accumulation of cytoplasmic polydisperse RNA suggested that as much as 40% of the hnRNA may be transported to the cytoplasm. The 14-25% of the hnRNA that contained a poly(A) tract had an average molecular size of 0.7 X 10(6) daltons. The poly(A) segment was 40-200 nucleotides long, consisted of at least 95% AMP and accounted for 8-10% of the [32P]orthophosphate incorporated into the poly(A)-containing hnRNA. Ribonucleoprotein particles released from nuclei by sonication, lysis in EDTA or incubation in buffer were analysed by sedimentation through sucrose gradients and by isopycnic centrifugation in gradients of metrizamide and CsCl. More than 50% of the hnRNA remained bound to the chromatin after each treatment. The hnRNA was always associated with protein but the densities of isolated particles suggested that the ratio of protein to RNA was lower than that reported for mammalian cells, The particles separated from chromatin were not enriched for poly(A)-containing hnRNA.  (+info)

(8/3703) Endoribonuclease IV. A poly(A)-specific ribonuclease from chick oviduct. 1. Purification of the enzyme.

A new endoribonuclease, termed endoribonuclease IV, has been described. This enzyme has been isolated from chick oviducts and purified 15 000-fold in a 25% yield nearly to homogeneity. The nuclease, which specifically degrades poly(A), forms oligonucleotides of an average chain length of 10. These (A)-10 fragments are terminated by 3'-hydroxyl and 5'-phosphate groups. The enzyme has a pH optimum at 8.7, requires Mn2+ or Mg2+ as a cofactor, and has a molecular weight of about 45 000.  (+info)