Conserved features of germination and polarized cell growth: a few insights from a pollen-fern spore comparison. (1/240)

BACKGROUND: The germination of both pollen and fern spores results in the emergence of a cell-pollen tube from pollen, rhizoid from spore-that grows in a polar fashion, primarily at its apical end. In both of these tip-growing cells, the delivery of secretory vesicles to the growing end is guided in part by a calcium gradient, with calcium entering at the tip where it is most highly concentrated. The similarities between the two systems extend beyond tip-focused calcium gradients to encompass signalling pathways and elements including calmodulin, nitric oxide, annexins and Rop-GTPases. SCOPE AND AIMS: This review is limited to those pathways and elements that function similarly in fern and pollen systems based on currently available evidence. The aim is to illustrate the common mechanisms by which tip growth occurs, facilitate further investigations into this area, and examine the implications for the evolutionarily conserved control of tip growth. CONCLUSIONS: The interplay of calcium, nitric oxide and other effectors in both pollen and fern spores suggests certain signalling pathways became important regulators of germination and growth early in the evolution of land plants. Both large- and small-scale comparative genomic methods have shown to be promising in their ability to find new and relevant comparisons for further research. Cross-species comparisons may serve to speed up this process by highlighting both basic pathways and system-specific deviations.  (+info)

Membrane trafficking and polar growth in root hairs and pollen tubes. (2/240)

Root hairs and pollen tubes extend by rapid elongation that occurs exclusively at the tip. Fundamental for such local, tip-focused growth (so-called 'tip growth') is the polarization of the cytoplasm that directs secretory events to the tip, and the presence of internal gradients and transmembrane flux of ions, notably Ca2+, H+, K+, and Cl-. Electrophysiological and imaging studies using fluorescent markers have sought to link ion gradients with growth and membrane trafficking. Current models recognize membrane trafficking as fundamental to tip growth, notably its role in supplying lipid and protein to the new plasma membrane and cell wall that extend the apex of the cell, and a complementary role for endocytosis in retrieving excess membrane and in recycling various protein fractions. The current state of knowledge is reviewed here in order to highlight the major gaps in the present understanding of trafficking as it contributes to polar growth in these cells and recent results, that suggest a role for membrane trafficking in the active regulation of ion channel turnover and activity during polar tip growth, are discussed.  (+info)

Species preferentiality of the pollen tube attractant derived from the synergid cell of Torenia fournieri. (3/240)

The synergid cell of Torenia fournieri attracts pollen tubes by a diffusible but yet unknown chemical attractant. Here we investigated the species difference of the attractant using five closely related species in two genera, namely T. fournieri, Torenia baillonii, Torenia concolor, Lindernia (Vandellia) crustacea, and Lindernia micrantha. These five species have an exserted embryo sac, and ablation experiments confirmed that their synergid cells attracted the pollen tube. When ovules of T. fournieri and one of the other species were cultivated together with pollen tubes of each species, pollen tubes were significantly more attracted to synergid cells of the corresponding species. The attraction was not affected by the close proximity of embryo sacs of different species. This suggests that the attractant is a species-preferential molecule that is likely synthesized in the synergid cell. The calcium ion, long considered a potential attractant, could not serve as the sole attractant in these species, because elevation of the calcium ion concentration did not affect the observed attraction. In vivo crossing experiments also showed that the attraction of the pollen tube to the embryo sac was impaired when pollen tubes of different species arrived around the embryo sac, suggesting that the species preferentiality of the attractant may serve as a reproductive barrier in the final step of directional control of the pollen tube.  (+info)

Structural and functional compartmentalization in pollen tubes. (4/240)

Eukaryotic cellular functions are achieved by concerted activities in the cytosol and functions compartmentalized in the nucleus and other membrane-bound organelles. Moreover, the cytosol and nucleoplasm are populated with mega molecular ensembles that are specialized for different metabolic and biochemical processes. Pollen tubes are unique plant cells with a dramatic growth polarity. Tube growth is restricted to the tip and is supported by a polarized cytoplasmic organization. The apical region of elongating pollen tubes is a domain occupied exclusively by transport vesicles to support the secretion and endocytic activity needed for the rapid cell expansion at the apex. Larger organelles are predominantly segregated to the cytoplasm distal to the subapical region. Underlying the organelle compartmentalization is an elaborate actin cytoskeleton with distinct structural and dynamics properties at the tip, in the subapical region, and in the cytoplasm subtending it. Cytoplasmic domains with differential ionic conditions and spatially restricted localization of molecules in pollen tubes may also be important for regulating the polar cell growth process. The polarized cellular organization in pollen tubes drives an extremely efficient cell growth process that is responsive to extracellular signals, including directional cues. It may be an amplified framework of the cytoplasmic architecture that supports growth in other plant cell types that involves considerably more subtle and transient differential cell expansion.  (+info)

Exogenous free ubiquitin enhances lily pollen tube adhesion to an in vitro stylar matrix and may facilitate endocytosis of SCA. (5/240)

Pollen tube adhesion and guidance on extracellular matrices within the pistil are essential processes that convey the pollen tube cell and the sperm cells to the ovule. In this study, we purified an additional molecule from the pistil that enhances pollen tube adhesion when combined with the SCA (stigma/stylar cysteine-rich adhesin)/pectin matrix in our in vitro assay. The enhancer of adhesion was identified as free ubiquitin (Ub). This was confirmed by use of bovine Ub as a substitute for lily (Lilium longiflorum Thunb.) stigma Ub. To study the interaction of SCA and Ub with the lily pollen tube, we labeled both proteins with biotin. We observed uptake of biotin-labeled SCA and Ub into the pollen tube cells in vitro using confocal microscopy. For SCA, a strong signal occurred first at the tip of the pollen tube, suggestive of an endocytosis event, and then progressively throughout the tube cytoplasm. SCA was also localized inside the in vivo pollen tube using immunogold electron microscopy and found to be present in endosomes, multivesicular bodies, and vacuoles, all known to be endocytic compartments. It was also confirmed that SCA is endocytosed in the in vitro adhesion assay. Internalization of SCA was increased in pollen tubes treated with exogenous Ub compared to those without Ub, suggesting that Ub may facilitate SCA endocytosis. These results show that Ub can act as an enhancer of pollen tube adhesion in vitro and that it is taken up into the pollen tube as is SCA. The Ub machinery may play a role in pollen tube adhesion and guidance in lily.  (+info)

Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. (6/240)

In flowering plants, diploid sporophytic tissues in ovules and anthers support meiosis and subsequent haploid gametophyte development. These analogous reproductive functions suggest that common mechanisms may regulate ovule and anther development. Two Arabidopsis Auxin Response Factors, ARF6 and ARF8, regulate gynoecium and stamen development in immature flowers. Wild-type pollen grew poorly in arf6 arf8 gynoecia, correlating with ARF6 and ARF8 expression in style and transmitting tract. ARF6 and ARF8 transcripts are cleavage targets of the microRNA miR167, and overexpressing miR167 mimicked arf6 arf8 phenotypes. Mutations in the miR167 target sites of ARF6 or ARF8 caused ectopic expression of these genes in domains of both ovules and anthers where miR167 was normally present. As a result, ovule integuments had arrested growth, and anthers grew abnormally and failed to release pollen. Thus, miR167 is essential for correct patterning of gene expression, and for fertility of both ovules and anthers. The essential patterning function of miR167 contrasts with cases from animals in which miRNAs reinforce or maintain transcriptionally established gene expression patterns.  (+info)

NAD(P)H oscillates in pollen tubes and is correlated with tip growth. (7/240)

The location and changes in NAD(P)H have been monitored during oscillatory growth in pollen tubes of lily (Lilium formosanum) using the endogenous fluorescence of the reduced coenzyme (excitation, 360 nm; emission, >400 nm). The strongest signal resides 20 to 40 microm behind the apex where mitochondria (stained with Mitotracker Green) accumulate. Measurements at 3-s intervals reveal that NAD(P)H-dependent fluorescence oscillates during oscillatory growth. Cross-correlation analysis indicates that the peaks follow growth maxima by 7 to 11 s or 77 degrees to 116 degrees, whereas the troughs anticipate growth maxima by 5 to 10 s or 54 degrees to 107 degrees. We have focused on the troughs because they anticipate growth and are as strongly correlated with growth as the peaks. Analysis of the signal in 10-microm increments along the length of the tube indicates that the troughs are most advanced in the extreme apex. However, this signal moves basipetally as a wave, being in phase with growth rate oscillations at 50 to 60 microm from the apex. We suggest that the changes in fluorescence are due to an oscillation between the reduced (peaks) and oxidized (troughs) states of the coenzyme and that an increase in the oxidized state [NAD(P)(+)] may be coupled to the synthesis of ATP. We also show that diphenyleneiodonium, an inhibitor of NAD(P)H dehydrogenases, causes an increase in fluorescence and a decrease in tube growth. Finally, staining with 5-(and-6)-chloromethyl-2',7'-dichlorohydrofluorescein acetate indicates that reactive oxygen species are most abundant in the region where mitochondria accumulate and where NAD(P)H fluorescence is maximal.  (+info)

Arabidopsis HAP2 (GCS1) is a sperm-specific gene required for pollen tube guidance and fertilization. (8/240)

In flowering plants, sperm cells develop in the pollen cytoplasm and are transported through floral tissues to an ovule by a pollen tube, a highly polarized cellular extension. After targeting an ovule, the pollen tube bursts, releasing two sperm that fertilize an egg and a central cell. Here, we identified the gene encoding Arabidopsis HAP2, demonstrating that it is allelic to GCS1. HAP2 is expressed only in the haploid sperm and is required for efficient pollen tube guidance to ovules. We identified an insertion (hap2-1) that disrupts the C-terminal portion of the protein and tags mutant pollen grains with the beta-glucuronidase reporter. By monitoring reporter expression, we showed that hap2-1 does not diminish pollen tube length in vitro or in the pistil, but it reduces ovule targeting by twofold. In addition, we show that the hap2 sperm that are delivered to ovules fail to initiate fertilization. HAP2 is predicted to encode a protein with an N-terminal secretion signal, a single transmembrane domain and a C-terminal histidine-rich domain. These results point to a dual role for HAP2, functioning in both pollen tube guidance and in fertilization. Moreover, our findings suggest that sperm, long considered to be passive cargo, are involved in directing the pollen tube to its target.  (+info)