Lung volumes and closing capacity with continuous positive airway pressure. (65/1109)

Total lung capacity, vital capacity, residual volume, and functional residual capacity were determined by body plethysmography and the single-breath oxygen (SBO2) test was performed at 0, 5, and 11 cm H20 continuous positive airway pressure in healthy, awake, seated, spontaneously breathing subjects. Mean values for the absolute lung volume at which phase IV of the SBO2 test begins (closing capacity) did not change significantly with continous positive airway pressure at 5 or 11 cm H2O. Mean total lung capacity, functional residual capacity, and residual volume increased significantly, and the mean closing volume, the lung volume above residual volume at which phase IV begins, decreased significantly with 11 cm H20 continuous positive airway pressure; differences at 5 cm H20 were not significant. The slope of the alveolar nitrogen plateau (phase III) obtained during the SBO-2 test did not change with continuous positive airway pressure.  (+info)

Detecting lung overdistention in newborns treated with high-frequency oscillatory ventilation. (66/1109)

Positive airway pressure (Paw) during high-frequency oscillatory ventilation (HFOV) increases lung volume and can lead to lung overdistention with potentially serious adverse effects. To date, no method is available to monitor changes in lung volume (DeltaVL) in HFOV-treated infants to avoid overdistention. In five newborn piglets (6-15 days old, 2.2-4.2 kg), we investigated the use of direct current-coupled respiratory inductive plethysmography (RIP) for this purpose by evaluating it against whole body plethysmography. Animals were instrumented, fitted with RIP bands, paralyzed, sedated, and placed in the plethysmograph. RIP and plethysmography were simultaneously calibrated, and HFOV was instituted at varying Paw settings before (6-14 cmH(2)O) and after (10-24 cmH(2)O) repeated warm saline lung lavage to induce experimental surfactant deficiency. Estimates of Delta VL from both methods were in good agreement, both transiently and in the steady state. Maximal changes in lung volume (Delta VL(max)) from all piglets were highly correlated with Delta VL measured by RIP (in ml) = 1.01 x changes measured by whole body plethysmography - 0.35; r(2) = 0.95. Accuracy of RIP was unchanged after lavage. Effective respiratory system compliance (Ceff) decreased after lavage, yet it exhibited similar sigmoidal dependence on Delta VL(max) pre- and postlavage. A decrease in Ceff (relative to the previous Paw setting) as Delta VL(max) was methodically increased from low to high Paw provided a quantitative method for detecting lung overdistention. We conclude that RIP offers a noninvasive and clinically applicable method for accurately estimating lung recruitment during HFOV. Consequently, RIP allows the detection of lung overdistention and selection of optimal HFOV from derived Ceff data.  (+info)

Cardiocirculatory coupling during sinusoidal baroreceptor stimulation and fixed-frequency breathing. (67/1109)

The question of whether respiratory sinus arrhythmia (RSA) originates mainly from a central coupling between respiration and heart rate, or from baroreflex mechanisms, is a subject of controversy. If there is a major contribution of baroreflexes to RSA, cardiocirculatory coupling during breathing and during cyclic baroreflex stimulation should show similarities. We applied a sinusoidal stimulus to the carotid baroreceptors and generated heart rate fluctuations of the same magnitude as RSA with a frequency similar to, but different from, the breathing frequency (0.2 Hz, compared with 0.25 Hz), and at 0.1 Hz, in 17 supine healthy subjects (age 28-39 years). The data were analysed using discrete Fourier-transform and transfer function analysis. Respiratory fluctuations in systolic blood pressure preceded RSA with a time lag equal to that between baroreceptor stimulation and oscillations in RR interval (0.62+/-0.18 s compared with 0.57+/-0.28 s at 0.2 Hz neck suction). The response of systolic blood pressure to neck suction at 0.2 Hz was 5 times less than the respiratory blood pressure fluctuations. Neck suction at 0.1 Hz largely increased fluctuations in blood pressure and RR interval, whereas the spontaneous phase relationship between blood pressure and RR interval remained unchanged. Our results are not consistent with the hypothesis that the origin of RSA is predominantly a central phenomenon which secondarily generates fluctuations in blood pressure, but suggest that, under the condition of fixed-frequency breathing at 0.25 Hz, baroreflex mechanisms contribute to respiratory fluctuations in RR interval.  (+info)

Body composition techniques and the four-compartment model in children. (68/1109)

The purpose of this study was to compare the accuracy, precision, and bias of fat mass (FM) as assessed by dual-energy X-ray absorptiometry (DXA), hydrostatic weighing (HW), air-displacement plethysmography (PM) using the BOD POD body composition system and total body water (TBW) against the four-compartment (4C) model in 25 children (11.4 +/- 1.4 yr). The regression between FM by the 4C model and by DXA deviated significantly from the line of identity (FM by 4C model = 0.84 x FM by DXA + 0.95 kg; R(2) = 0.95), as did the regression between FM by 4C model and by TBW (FM by 4C model = 0. 85 x FM by TBW - 0.89 kg; R(2) = 0.98). The regression between FM by the 4C model and by HW did not significantly deviate from the line of identity (FM by 4C model = 1.09 x FM by HW + 0.94 kg; R(2) = 0. 95) and neither did the regression between FM by 4C (using density assessed by PM) and by PM (FM by 4C model = 1.03 x FM by PM + 0.88; R(2) = 0.97). DXA, HW, and TBW all showed a bias in the estimate of FM, but there was no bias for PM. In conclusion, PM was the only technique that could accurately, precisely, and without bias estimate FM in 9- to 14-yr-old children.  (+info)

Central histamine contributed to temperature-induced polypnea in mice. (69/1109)

Breathing pattern is influenced by body temperature. However, the central mechanism for changing breathing patterns is unknown. Central histamine is involved in heat loss mechanisms in behavioral studies, but little is known about its effect on breathing patterns. We examined first the effect of body temperature on breathing patterns with increasing hypercapnia in conscious mice and then that of the depletion of central histamine by S(+)-alpha-fluoromethylhistidine hydrochloride (alpha-FMH) (100 mg/kg ip), a specific inhibitor of histidine decarboxylase, at normal and raised body temperatures. A raised body temperature increased respiratory frequency with reductions in both inspiratory and expiratory time and decreased tidal volume. On the other hand, alpha-FMH lowered respiratory frequency with a prolongation of expiratory time at the raised temperature; however, this was not observed at a normal temperature. These results indicate that central histamine contributes to an increase in respiratory frequency as a result of a reduction in expiratory time when body temperature is raised.  (+info)

Enhanced peripheral vasodilation in humans after a fatty meal. (70/1109)

OBJECTIVES: We sought to study the effects of a fatty meal on vascular reactivity, including endothelial function and maximal vasodilation. BACKGROUND: Recent reports regarding the physiological changes in peripheral vasculature after eating a fatty meal have been controversial. METHODS: Twelve volunteers were studied before, 3 h after, and 6 h after a high-fat meal (1030 kcal, 61 g fat) rich in saturated fatty acids, and 10 were restudied after a similar meal rich in monounsaturated fatty acids. Endothelial function was assessed as flow-mediated dilatation (FMD) in the brachial artery using ultrasound. Resting and postischemic forearm blood flow (FBF) were recorded using venous occlusion strain-gauge plethysmography, before, and every 10 to 15 s after, 5 min upper arm ischemia. RESULTS: Brachial artery basal diameter, resting FBF and postischemic hyperemia increased after high-fat meals (all p<0.001), whereas FMD did not change. The increase in resting FBF correlated with increases in postprandial insulin (r = 0.80, p<0.002) and triglyceride (r = 0.77, p<0.005) levels. CONCLUSIONS: We concluded that eating a fatty meal induces vasodilation and increases resting and stimulated FBF and that these observations are probably mediated by postprandial changes in insulin and/or triglyceride levels. The metabolic changes that occur after meals are not associated with impaired endothelial nitric oxide release in the conduit arteries.  (+info)

Differential effects of eicosapentaenoic acid and docosahexaenoic acid on vascular reactivity of the forearm microcirculation in hyperlipidemic, overweight men. (71/1109)

BACKGROUND: Recent evidence supports differential effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the 2 major omega3 fatty acids of marine origin, on blood pressure in humans and vascular reactivity in adult spontaneously hypertensive rats. We investigated possible differences in the effects of purified EPA or DHA on forearm vascular reactivity in overweight hyperlipidemic men that might contribute to the blood pressure-lowering effects of fish oils. METHODS AND RESULTS: With a double-blind, placebo-controlled trial of parallel design, 59 overweight, mildly hyperlipidemic men were randomized to receive 4 g/d purified EPA, DHA, or olive oil (placebo) capsules while continuing their usual diets for 6 weeks. Forearm blood flow (FBF) was measured with venous occlusion, strain-gauge plethysmography during the sequential intra-arterial administration of acetylcholine (7.5, 15, and 30 microg/min), sodium nitroprusside (1.5, 3, and 10 microg/min), norepinephrine (10, 20, and 40 ng/min), a single-dose infusion of N:(G)-monomethyl-L-arginine (L-NMMA) (1 mg/min), and coinfusion of acetylcholine (7.5, 15, and 30 microg/min) and L-NMMA. Forty of the 56 subjects who completed the study underwent FBF measurements. Plasma phospholipid EPA levels increased significantly (P:<0.0001) after supplementation with EPA, and DHA composition increased with DHA supplementation (P:<0.0001). Relative to placebo, DHA, but not EPA, supplementation significantly improved FBF in response to acetylcholine infusion (P:=0.040) and coinfusion of acetylcholine with L-NMMA (P:=0.040). Infusion of L-NMMA alone showed no group differences. DHA significantly enhanced dilatory responses to sodium nitroprusside (P:<0.0001) and attenuated constrictor responses to norepinephrine (P:=0.017). CONCLUSIONS: Relative to placebo, DHA, but not EPA, enhances vasodilator mechanisms and attenuates constrictor responses in the forearm microcirculation. Improvements in endothelium-independent mechanisms appear to be predominant and may contribute to the selective blood pressure-lowering effect observed with DHA compared with EPA in humans.  (+info)

Occlusion cuff position is an important determinant of the time course and magnitude of human brachial artery flow-mediated dilation. (72/1109)

Non-invasive ultrasound techniques to assess flow-mediated vasodilation (FMD) are frequently used to assess arterial endothelial vasodilator function. However, the range of normal values varies considerably, possibly due to differences in methodological factors. We sought to determine the effect of occlusion cuff position on the time course and magnitude of brachial artery blood flow and flow-mediated dilation. Twelve healthy subjects underwent measurements of forearm blood flow using venous occlusion plethysmography (VOP) before and after 5 min of susprasystolic cuff inflation, using two randomly assigned occlusion cuff positions (upper arm and forearm). An additional 16 subjects underwent two brachial ultrasound studies, using the two cuff positions, to assess the extent and time course of changes in brachial artery diameter and blood flow. Maximum increase in blood flow (peak reactive hyperaemia), measured by VOP, occurred immediately upon each cuff deflation, but was greater after upper arm compared with forearm arterial occlusion (33.1+/-3.1 versus 22.8+/-2.2 ml/min per forearm tissue, P=0.001). Maximal brachial artery FMD was significantly greater following upper arm occlusion (9.0+/-1.2%, mean +/- S.E.M.) compared with forearm occlusion (5.9+/-0.7%, P=0.01). The time course of the change in brachial artery diameter was affected differently in response to each protocol. The time to peak dilation following upper arm occlusion was delayed by 22 s compared with forearm occlusion. Occlusion cuff position is thus a powerful determinant of peak reactive hyperaemia, volume repaid and the extent and time course of brachial artery FMD. Positioning the cuff on the upper arm produces a greater FMD. These results highlight the need for comparisons between FMD studies to be made with care.  (+info)