Quantifying GPIIb/IIIa receptor binding using 2 monoclonal antibodies: discriminating abciximab and small molecular weight antagonists. (33/4463)

BACKGROUND: Dosing of glycoprotein (GP) IIb/IIIa receptor antagonists is frequently based on the inhibition of platelet aggregation, which may be influenced by the agonist used or concurrent medications. Here we describe a monoclonal antibody-based technique to quantify total and ligand-occupied GPIIb/IIIa receptors. METHODS AND RESULTS: In vitro binding of monoclonal antibodies, LYP18 (Mab1) and 4F8 (Mab2), to the GPIIb/IIIa complex, was characterized using purified receptor and to platelets by flow cytometry. Patients undergoing coronary angioplasty received a single 20 mg dose of the oral GPIIb/IIIa antagonist, xemilofiban, or matching placebo, and antibody binding was compared with inhibition of platelet aggregation. Mab1 and Mab2 were bound to purified GPIIb/IIIa and to unoccupied, inactivated receptor on platelets. Mab2 identified the beta3 subunit, whereas Mab1 was complex-specific. Neither antibody interfered with the other's binding, suggesting that they identified distinct sites. Mab1 identified 53 300+/-5423 GPIIb/IIIa sites per platelet, whereas Mab2 identified 50 120+/-5066 sites per platelet. Mab1 binding was inhibited by abciximab in a dose dependent manner (IC50, 0.85+/-0.1 microg/mL), whereas Mab2 binding was unaffected. In contrast, the 2 small molecular weight antagonists, SC-57101A (IC50, 0.22+/-0.06 micromol/L) and eptifibatide (IC50, 0.35+/-0.14 micromol/L) inhibited Mab2 but not Mab1 binding. In patients treated with xemilofiban, Mab1 binding was unaltered but Mab2 binding decreased from 37 930+/-2061 sites per platelet at baseline to 8318+/-870 sites per platelet 6 hours after dosing (P<0.0001). Platelet aggregation to adenosine diphosphate (20 micromol/L) fell to 3+/-3% of baseline in line with the inhibition of Mab2 binding (correlation coefficient 0.8, P<0.0001). CONCLUSIONS: Mab1 and Mab2 bind to GPIIb/IIIa and are differentially displaced by abciximab and small molecular weight antagonists. These antibodies may be used to monitor receptor number and occupancy during administration of a GPIIb/IIIa antagonist.  (+info)

Co-activation of Gi and Gq proteins exerts synergistic effect on human platelet aggregation through activation of phospholipase C and Ca2+ signalling pathways. (34/4463)

Our previous studies have shown that subthreshold concentrations of two platelet agonists exert synergistic effects on platelet aggregation. Here we studied the mechanism of synergistic interaction of 5-hydroxytryptamine (5-HT) and epinephrine mediated platelet aggregation. We show that 5-HT had no or little effect on aggregation but it did potentiate the aggregation response of epinephrine. The synergistic interaction of 5-HT (1-5 microM) and epinephrine (0.5-2 microM) was inhibited by alpha2-adrenoceptor blocker (yohimbine; IC50= 0.4 microM), calcium channel blockers (verapamil and diltiazem with IC50 of 10 and 48 mM, respectively), PLC inhibitor (U73122; IC50=6 microM) and nitric oxide (NO) donor, SNAP (IC50=1.6 microM)). The data suggest that synergistic effects of platelet agonists are receptor-mediated and occur through multiple signalling pathways including the activation PLC/Ca2+ signalling cascades.  (+info)

Deficient activity of von Willebrand's factor-cleaving protease in patients with disseminated malignancies. (35/4463)

An aberrant platelet immunorelated glycoprotein Ib (GPIb) receptor expressed by human tumor cells appears to participate in primary adhesive interactions required for the metastatic process. Hence, we questioned whether plasma von Willebrand's factor (vWf), its adhesive ligand, manifested comparable anomalies in patients with disseminated tumors. Plasma specimens from patients with disseminated metastases showed 68% (P < 0.013), 91% (P < 0.0009), and 207% (P < 0.0009) enhancements in FVIII:C activity, vWf-related antigen levels, and ristocetin co-factor activity, respectively, whereas their SDS-agarose electrophoretic analysis demonstrated a 165% (P < 0.001) increase in the highly polymeric forms of vWf compared to control preparations from patients with corresponding, localized solid tumors. Substantially reduced levels of vWf-cleaving protease activity were observed in study patient specimens, with no plasma inhibitors detectable. The clinical presence and absence of tumor metastases correlated significantly with vWf-cleaving enzyme activities of < or = 15% and > or = 88%, respectively (n = 20; P < 0.0001). Finally, with an in vitro model system, tumor-induced platelet aggregation was enhanced by 127% (P < 0.001) in study patient platelet-rich plasma (PRP) compared to control PRP and could be completely inhibited (P < 0.0009) when both tumor cells and their PRP substrates were incubated with monoclonal antibodies directed against the vWf binding epitope of GPIb alpha and against the GPIb binding epitope of plasma vWf, respectively. Unusually large vWf multimers observed in patients with disseminated tumors probably result from deficient vWf-cleaving protease activity and may represent a novel mechanism regulating primary platelet-tumor adhesive interactions involved in the metastatic process.  (+info)

Nitric oxide inhibits thrombin receptor-activating peptide-induced phosphoinositide 3-kinase activity in human platelets. (36/4463)

Although nitric oxide (NO) has potent antiplatelet actions, the signaling pathways affected by NO in the platelet are poorly understood. Since NO can induce platelet disaggregation and phosphoinositide 3-kinase (PI3-kinase) activation renders aggregation irreversible, we tested the hypothesis that NO exerts its antiplatelet effects at least in part by inhibiting PI3-kinase. The results demonstrate that the NO donor S-nitrosoglutathione (S-NO-glutathione) inhibits the stimulation of PI3-kinase associated with tyrosine-phosphorylated proteins and of p85/PI3-kinase associated with the SRC family kinase member LYN following the exposure of platelets to thrombin receptor-activating peptide. The activation of LYN-associated PI3-kinase was unrelated to changes in the amount of PI3-kinase physically associated with LYN signaling complexes but did require the activation of LYN and other tyrosine kinases. The cyclic GMP-dependent kinase activator 8-bromo-cyclic GMP had similar effects on PI3-kinase activity, consistent with a model in which the cyclic nucleotide mediates the effects of NO. Additional studies showed that wortmannin and S-NO-glutathione have additive inhibitory effects on thrombin receptor-activating peptide-induced platelet aggregation and the surface expression of platelet activation markers. These data provide evidence of a distinct and novel mechanism for the inhibitory effects of NO on platelet function.  (+info)

Role of the hematocrit in a rabbit model of arterial thrombosis and bleeding. (37/4463)

BACKGROUND: A decrease in hematocrit lengthens bleeding time. The authors studied the role of hematocrit variations in an experimental model of arterial thrombosis and bleeding. METHODS: The Folts model was used in 24 rabbits. After anesthesia was induced and common monitors were positioned, the right common carotid artery was exposed and a 60% stenosis was induced. A compression injury of the artery was then produced, which triggered a series of cyclic episodes of thrombosis and clot lysis (cyclic flow reductions [CFRs]). After counting the number of CFRs that occurred in 20 min (CFR1), the animals were assigned randomly to one of three groups (n = 8 in each group): control, hemodilution with rabbit homologous platelet-rich plasma, and hemodilution with gelatin solution and then reinfusion of the shed blood. The effect of hemodilution with replacement by platelet-rich plasma or by colloid was observed by recording the number of CFRs during another 20-min period (CFR2). A third period of observation (CFR3) followed shed blood reinfusion in the gelatin solution group. Ear immersion bleeding time was recorded after each CFR period. RESULTS: In the two experimental groups, the decrease in hematocrit (from 36 +/- 3% to 23 +/- 2% and from 38 +/- 3% to 23 +/- 2%, respectively; mean +/- SD) abolished CFRs (from a median of 4 to 0 and 7 to 0, respectively) and significantly lengthened bleeding time (from 76 +/- 24 s to 114 +/- 36 s and from 84 +/- 37 s to 127 +/- 29 s, respectively). Blood reinfusion in the group that received the gelatin solution caused CFR to reappear (CFR3 = 4). CONCLUSIONS: Decreases in hematocrit reduced the cyclic arterial thrombosis rate and increased the bleeding time in the rabbits in this study. Hematocrit normalization caused thrombosis to reappear.  (+info)

Platelet-stimulated thrombin and PDGF are normalized by insulin and Ca2+ channel blockers. (38/4463)

Coronary artery disease is accelerated in chronic spinal cord injury (SCI). Because prostacyclin (PGI2) may retard atherogenesis through its inhibitory effects on platelet function, the role of PGI2 on SCI platelets was determined. The SCI platelets were neither hypersensitive to aggregating agonists nor resistant to the inhibitory effect of PGI2, but PGI2 failed to inhibit platelet-stimulated thrombin generation and the release of platelet-derived growth factor (PDGF) in SCI. Because thrombin and PDGF are atherogenic mitogens, the generation of these mitogens was investigated. Both the release of PDGF and thrombin generation in SCI platelets were higher when compared with control (n = 12). Treatment of non-SCI platelets with 100 nM PGE1 (a stable probe of PGI2) inhibited the release of the mitogens by 90% (P < 0.001), with no effect on SCI platelets. Scatchard analysis of prostaglandin E1 (PGE1) binding showed a 70% decrease of PGI2 receptors on the SCI platelet surface. Treatment of SCI platelets with insulin or Ca2+ channel blockers restored the PGI2-receptor number and "normalized" the inhibition of PDGF release and thrombin generation by PGI2.  (+info)

Caffeine alters A2A adenosine receptors and their function in human platelets. (39/4463)

BACKGROUND: Caffeine acts mainly via blockade of adenosine receptors, which have been classified into A1, A2A, A2B, and A3 subtypes. We determined whether repeated caffeine administration (750 mg/d for 1 week) upregulates the human platelet A2A adenosine receptor and is accompanied by sensitization of platelet responses (increase in cAMP accumulation and decrease in platelet aggregation) to selective stimulation of the A2A receptors. METHODS AND RESULTS: Platelets were obtained from peripheral venous blood of 9 human volunteers at the end of 1 week of caffeine abstinence (control) and at 12 and 60 hours after the last dose of caffeine (withdrawal). The A2A receptor radioligand [3H]SCH 58261 (5-amino-7(phenylethyl)-2-(2-furyl)-pyrazolo[4,3-e]-1,2,4-triazolo[1, 5-c]-pyrimidine) bound to a single affinity class of sites in platelet membranes from controls with a Bmax of 98+/-2 fmol/mg protein and a KD of 1.29+/-0.05 nmol/L. At 12 and 60 hours after caffeine withdrawal, the radioligand bound with similar affinity (KD=1.36+/-0.06 and 1.21+/-0.05 nmol/L, respectively), but the Bmax was increased (P<0.01) to 128+/-3 and 132+/-2 fmol/mg protein. The A2A receptor agonist 2-hexynyl-5'-N-ethylcarboxamidoadenosine (HE-NECA) increased cAMP accumulation (EC50=59+/-3 nmol/L) and inhibited (IC50=90+/-6 nmol/L) aggregation of control platelets. The EC50 values for HE-NECA to increase cAMP accumulation of platelets were reduced (P<0.01) at 12 and 60 hours after caffeine withdrawal (31+/-3 and 21+/-2 nmol/L, respectively). The IC50 values for HE-NECA to inhibit ADP-induced platelet aggregation were 50+/-5 and 30+/-2 nmol/L at 12 and 60 hours after caffeine withdrawal, respectively. CONCLUSIONS: Chronic caffeine intake leads to upregulation of A2A receptors and is accompanied by sensitization to the actions of the agonist HE-NECA.  (+info)

Leptin promotes aggregation of human platelets via the long form of its receptor. (40/4463)

Plasma leptin levels are elevated in most obese individuals, and obesity is accompanied by a high incidence of cardiovascular disease. Therefore, leptin could be involved in the pathogenesis of cardiovascular disease. In the present study, the role of leptin was explored in the regulation of platelet function. The expression of the long form of the leptin receptor was detected in human platelets. At 50 ng/ml, human leptin induced phosphorylation of several proteins of platelets at the tyrosine residue. Neither leptin at concentrations < or = 100 ng/ml nor ADP at concentrations > or = 1 micromol/l affected platelet aggregation. However, after pretreatment with 100 ng/ml leptin for 5 min, 1 micromol/l ADP caused aggregation. Thus, leptin and ADP acted synergistically. At a concentration of 2 micromol/l, ADP induced platelet aggregation, which was markedly enhanced by 30-100 ng/ml leptin in a concentration-dependent manner. This concentration range corresponds to that of plasma leptin levels in obese individuals. At the lower concentrations (< 10 ng/ml) that are observed in normal individuals, leptin had no effect on platelet aggregation. In conclusion, leptin at high concentrations has the novel function of promoting platelet aggregation, which may be a key coupling factor between obesity and the cardiovascular disease associated with syndrome X and diabetes.  (+info)