Activation of systemic acquired silencing by localised introduction of DNA. (1/7901)

BACKGROUND: In plants, post-transcriptional gene silencing results in RNA degradation after transcription. Among tobacco transformants carrying a nitrate reductase (Nia) construct under the control of the cauliflower mosaic virus 35S promoter (35S-Nia2), one class of transformants spontaneously triggers Nia post-transcriptional gene silencing (class II) whereas another class does not (class I). Non-silenced plants of both classes become silenced when grafted onto silenced stocks, indicating the existence of a systemic silencing signal. Graft-transmitted silencing is maintained in class II but not in class I plants when removed from silenced stocks, indicating similar requirements for spontaneous triggering and maintenance. RESULTS: Introduction of 35S-Nia2 DNA by the gene transfer method called biolistics led to localised acquired silencing (LAS) in bombarded leaves of wild-type, class I and class II plants, and to systemic acquired silencing (SAS) in class II plants. SAS occurred even if the targeted leaf was removed 2 days after bombardment, indicating that the systemic signal is produced, transmitted and amplified rapidly. SAS was activated by sense, antisense and promoterless Nia2 DNA constructs, indicating that transcription is not required although it does stimulate SAS. CONCLUSIONS: SAS was activated by biolistic introduction of promoterless constructs, indicating that the DNA itself is a potent activator of post-transcriptional gene silencing. The systemic silencing signal invaded the whole plant by cell-to-cell and long-distance propagation, and reamplification of the signal.  (+info)

Gene silencing: plants and viruses fight it out. (2/7901)

Plants can become 'immune' to attack by viruses by degrading specific viral RNA, but some plant viruses have evolved the general capacity to suppress this resistance mechanism.  (+info)

Polynucleotide probes that target a hypervariable region of 16S rRNA genes to identify bacterial isolates corresponding to bands of community fingerprints. (3/7901)

Temperature gradient gel electrophoresis (TGGE) is well suited for fingerprinting bacterial communities by separating PCR-amplified fragments of 16S rRNA genes (16S ribosomal DNA [rDNA]). A strategy was developed and was generally applicable for linking 16S rDNA from community fingerprints to pure culture isolates from the same habitat. For this, digoxigenin-labeled polynucleotide probes were generated by PCR, using bands excised from TGGE community fingerprints as a template, and applied in hybridizations with dot blotted 16S rDNA amplified from bacterial isolates. Within 16S rDNA, the hypervariable V6 region, corresponding to positions 984 to 1047 (Escherichia coli 16S rDNA sequence), which is a subset of the region used for TGGE (positions 968 to 1401), best met the criteria of high phylogenetic variability, required for sufficient probe specificity, and closely flanking conserved priming sites for amplification. Removal of flanking conserved bases was necessary to enable the differentiation of closely related species. This was achieved by 5' exonuclease digestion, terminated by phosphorothioate bonds which were synthesized into the primers. The remaining complementary strand was removed by single-strand-specific digestion. Standard hybridization with truncated probes allowed differentiation of bacteria which differed by only two bases within the probe target site and 1.2% within the complete 16S rDNA. However, a truncated probe, derived from an excised TGGE band of a rhizosphere community, hybridized with three phylogenetically related isolates with identical V6 sequences. Only one of the isolates comigrated with the excised band in TGGE, which was shown to be due to identical sequences, demonstrating the utility of a combined TGGE and V6 probe approach.  (+info)

Enhanced resistance to bacterial diseases of transgenic tobacco plants overexpressing sarcotoxin IA, a bactericidal peptide of insect. (4/7901)

Sarcotoxin IA is a bactericidal peptide of 39 amino acids found in the common flesh fly, Sarcophaga peregrina. Many agronomically important bacteria in Japan are killed by this peptide at sub-micro molar levels, and the growth of tobacco and rice suspension cultured cells is not inhibited with less than 25 microM. Transgenic tobacco plants which overexpress the peptide, i.e. over 250 pmol per gram of fresh leaf, under the control of a high expression constitutive promoter showed enhanced resistance to the pathogens for wild fire disease (Pseudomonas syringae pv. tabaci) and bacterial soft rot disease (Erwinia carotovora subsp. carotovora).  (+info)

Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. (5/7901)

Evolving levels of resistance in insects to the bioinsecticide Bacillus thuringiensis (Bt) can be dramatically reduced through the genetic engineering of chloroplasts in plants. When transgenic tobacco leaves expressing Cry2Aa2 protoxin in chloroplasts were fed to susceptible, Cry1A-resistant (20,000- to 40,000-fold) and Cry2Aa2-resistant (330- to 393-fold) tobacco budworm Heliothis virescens, cotton bollworm Helicoverpa zea, and the beet armyworm Spodoptera exigua, 100% mortality was observed against all insect species and strains. Cry2Aa2 was chosen for this study because of its toxicity to many economically important insect pests, relatively low levels of cross-resistance against Cry1A-resistant insects, and its expression as a protoxin instead of a toxin because of its relatively small size (65 kDa). Southern blot analysis confirmed stable integration of cry2Aa2 into all of the chloroplast genomes (5, 000-10,000 copies per cell) of transgenic plants. Transformed tobacco leaves expressed Cry2Aa2 protoxin at levels between 2% and 3% of total soluble protein, 20- to 30-fold higher levels than current commercial nuclear transgenic plants. These results suggest that plants expressing high levels of a nonhomologous Bt protein should be able to overcome or at the very least, significantly delay, broad spectrum Bt-resistance development in the field.  (+info)

Cytokinin activation of Arabidopsis cell division through a D-type cyclin. (6/7901)

Cytokinins are plant hormones that regulate plant cell division. The D-type cyclin CycD3 was found to be elevated in a mutant of Arabidopsis with a high level of cytokinin and to be rapidly induced by cytokinin application in both cell cultures and whole plants. Constitutive expression of CycD3 in transgenic plants allowed induction and maintenance of cell division in the absence of exogenous cytokinin. Results suggest that cytokinin activates Arabidopsis cell division through induction of CycD3 at the G1-S cell cycle phase transition.  (+info)

Cloning and expression of a wheat (Triticum aestivum L.) phosphatidylserine synthase cDNA. Overexpression in plants alters the composition of phospholipids. (7/7901)

We describe the cloning of a wheat cDNA (TaPSS1) that encodes a phosphatidylserine synthase (PSS) and provides the first strong evidence for the existence of this enzyme in a higher eukaryotic cell. The cDNA was isolated on its ability to confer increased resistance to aluminum toxicity when expressed in yeast. The sequence of the predicted protein encoded by TaPSS1 shows homology to PSS from both yeast and bacteria but is distinct from the animal PSS enzymes that catalyze base-exchange reactions. In wheat, Southern blot analysis identified the presence of a small family of genes that cross-hybridized to TaPSS1, and Northern blots showed that aluminum induced TaPSS1 expression in root apices. Expression of TaPSS1 complemented the yeast cho1 mutant that lacks PSS activity and altered the phospholipid composition of wild type yeast, with the most marked effect being increased abundance of phosphatidylserine (PS). Arabidopsis thaliana leaves overexpressing TaPSS1 showed a marked enhancement in PSS activity, which was associated with increased biosynthesis of PS at the expense of both phosphatidylinositol and phosphatidylglycerol. Unlike mammalian cells where PS accumulation is tightly regulated even when the capacity for PS biosynthesis is increased, plant cells accumulated large amounts of PS when TaPSS1 was overexpressed. High levels of TaPSS1 expression in Arabidopsis and tobacco (Nicotiana tabacum) led to the appearance of necrotic lesions on leaves, which may have resulted from the excessive accumulation of PS. The cloning of TaPSS1 now provides evidence that the yeast pathway for PS synthesis exists in some plant tissues and provides a tool for understanding the pathways of phospholipid biosynthesis and their regulation in plants.  (+info)

NADH-glutamate synthase in alfalfa root nodules. Genetic regulation and cellular expression. (8/7901)

NADH-dependent glutamate synthase (NADH-GOGAT; EC is a key enzyme in primary nitrogen assimilation in alfalfa (Medicago sativa L.) root nodules. Here we report that in alfalfa, a single gene, probably with multiple alleles, encodes for NADH-GOGAT. In situ hybridizations were performed to assess the location of NADH-GOGAT transcript in alfalfa root nodules. In wild-type cv Saranac nodules the NADH-GOGAT gene is predominantly expressed in infected cells. Nodules devoid of bacteroids (empty) induced by Sinorhizobium meliloti 7154 had no NADH-GOGAT transcript detectable by in situ hybridization, suggesting that the presence of the bacteroid may be important for NADH-GOGAT expression. The pattern of expression of NADH-GOGAT shifted during root nodule development. Until d 9 after planting, all infected cells appeared to express NADH-GOGAT. By d 19, a gradient of expression from high in the early symbiotic zone to low in the late symbiotic zone was observed. In 33-d-old nodules expression was seen in only a few cell layers in the early symbiotic zone. This pattern of expression was also observed for the nifH transcript but not for leghemoglobin. The promoter of NADH-GOGAT was evaluated in transgenic alfalfa plants carrying chimeric beta-glucuronidase promoter fusions. The results suggest that there are at least four regulatory elements. The region responsible for expression in the infected cell zone contains an 88-bp direct repeat.  (+info)